Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.
International journal of advanced smart convergence
/
제10권2호
/
pp.21-30
/
2021
With the rapid development of artificial intelligence and big data, a lot of medical data is effectively used, and the diagnosis and analysis of diseases has entered the era of intelligence. With the increasing public health awareness, ordinary citizens have also put forward new demands for panic disorder health services. Specifically, people hope to predict the risk of panic disorder as soon as possible and grasp their own condition without leaving home. Against this backdrop, the smart health industry comes into being. In the Internet age, a lot of panic disorder health data has been accumulated, such as diagnostic records, medical record information and electronic files. At the same time, various health monitoring devices emerge one after another, enabling the collection and storage of personal daily health information at any time. How to use the above data to provide people with convenient panic disorder self-assessment services and reduce the incidence of panic disorder in China has become an urgent problem to be solved. In order to solve this problem, this research applies the context awareness to the automatic diagnosis of human diseases. While helping patients find diseases early and get treatment timely, it can effectively assist doctors in making correct diagnosis of diseases and reduce the probability of misdiagnosis and missed diagnosis.
냉감을 느끼지 않을만한 온도에서 신체부위에 차가움을 느껴 일상생활이 곤란함을 호소하는 냉증환자가 늘어남에도 불구하고, 정확한 진단기구와 뚜렷한 치료기기가 없는 것이 사실이다. 그러므로 본 논문에서는 다양한 센서를 통하여 냉증을 측정 및 진단하고 환자의 냉증정도에 맞게 적응적으로 산소압과 치료시간을 조정할 수 있는 산소챔버를 냉증치료용 의료기기로 제안 설계한다. 특히 의사의 진찰과 문진을 통해 경험에 의존하던 기존의 주관적인 냉증 진단 방법에서 벗어나, 첨단 복합 생체센서의 측정데이터를 임상실험에 근거한 임계치를 바탕으로 비교함으로써 냉증을 정확히 진단하는 방법을 소개한다. 최종적으로 냉증의 진단 단계에 따라 적응적으로 산소량을 제어함으로써 냉증을 효과적으로 치료하는 산소챔버를 구현하여 한의학 의료기기의 과학화와 대중화에 기여하고자 한다.
최근 대부분의 인공지능 연구는 AI 모델 개발에 중점을 두고 있다. 하지만 최근 인공지능 연구가 모델 중심에서 데이터 중심으로 점차 변경되고 이런 추세를 바탕으로 학습데이터의 중요성이 크게 주목 받고 있다. 그러나 학습데이터의 준비과정이 전체 과정의 상당 부분을 차지하고 라벨링 데이터 생성 또한 개발 목적에 따라 다르기 때문에 많은 시간과 노력이 필요하다. 따라서 기존의 미충족을 해결하기 위한 다양한 라벨링 기능을 갖는 도구 개발이 필요하다. 본 논문에서는 의료영상의 라벨링 데이터를 정교하고 빠르게 생성하기 위한 라벨링 시스템에 대해서 기술한다. 이를 구현하기 위해서 Back Projection, GrabCut 기법을 이용한 반자동 방식과 기계학습 모델을 통해서 예측한 자동 방식의 라벨링 기능을 구현하였다. 우리는 제안한 시스템의 라벨링 데이터 생성에 대한 수행시간의 장점을 보였을뿐만 아니라 정확성에 대한 비교평가를 통해 우수성을 보였다. 또한 1,000여명의 환자 영상 데이터셋을 분석하여 근감소증 진단에 남성과 여성에 의미있는 진단지표를 제시하였다.
The objectives of this study were to examine serum periplakin expression in patients with urothelial carcinoma of the urinary bladder and in normal controls, and to examine relationships with clinicopathological findings. Detection of serum periplakin was performed in 50 patients and 30 normal controls with anti-periplakin antibodies using the automatic dot blot system, and a micro-dot blot array with a 256 solid-pin system. Levels in patients with urothelial carcinoma of the urinary bladder were significantly lower than those in normal controls (0.31 and 5.68, respectively; p<0.0001). The area under the receiver-operator curve level for urothelial carcinoma of the urinary bladder was 0.845. The sensitivity and specificity, using a cut-off point of 4.045, were 83.7% and 73.3%, respectively. In addition, serum periplakin levels were significantly higher in patients with muscle-invasive cancer than in those with nonmuscle-invasive cancer (P = 0.03). In multivariate Cox proportional hazards regression analysis, none of the clinicopathological factors was associated with an increased risk for progression and cancer-specific survival. Examination of the serum periplakin level may play a role as a non-invasive diagnostic modality to aid urine cytology and cystoscopy.
홍채진단은 홍채의 패턴, 색 등 다른 특징들을 조사하여 환자의 병을 진단하는 대체의학이다. 이 논문에서는 촬영한 홍채이미지의 차영상을 이용해 홍채를 분석하고 홍채 변화에 따른 환자의 건강진단에 활용한 질병예측 알고리즘을 제안한다. 그러나 기존의 연구는 홍채영상을 이용하여 홍채 내의 특정 패턴을 검출하는 알고리즘 연구로 홍채의 다양한 정보로부터 건강 상태를 체크하는 진단시스템으로 사용하기에는 부족하다. 따라서 이 논문에서는 촬영된 홍채영상의 차영상을 이용해 질병의 조기 진단 및 질병의 전개과정을 명확히 판단한다. 또한 홍채영상으로부터 8가지 주요 홍채병소징후를 추출하고 검진의 정확도를 실험한 결과 패턴 매칭 기법에 의한 인식률 91%로 홍채진단의 자동화에 적용 가능하다.
선천성 난청으로 태어난 아이를 조기에 진단하여 가능한 빨리 적절한 치료를 해줌으로써 치료 효과를 극대화하고, 이후에 발생되는 사회적 비용을 최소화할 수 있기 때문에 신생아로부터 난청 이상 유무를 객관적으로 판별하는 검사 장비가 필요하다. 대표적인 것으로 청성뇌간반응(auditory brainstem response, ABR) 검사가 있으나 클릭음(click sound)에 대한 반응으로 주파수 특이성이 없고 고주파수 대역에 대한 청력을 주로 반영하는 단점이 있다. 청성지속반응(auditory steady-state response, ASSR) 검사는 주파수 특이도는 좋으나 오진의 가능성이 조금 높다. 이러한 단점을 보완하여 청성뇌간반응 검사와 청성지속반응 검사를 하나의 시스템에서 측정하고, Fsp와 F-test 분석을 통하여 객관적 지표를 보여주는 시스템을 제안하였다. 하드웨어 구성요소를 최소화하고 소프트웨어 역할을 강화하여 추후 하드웨어 수정 없이 소프트웨어의 수정만으로 다양한 검사가 가능하도록 설계하였다. 제안한 시스템의 객관적 평가 기능은 정상인 10명을 대상으로 한 실험을 통하여 검증하였다.
본 연구는 복부 전산화단층촬영 영상을 이용하여 지방간환자의 영상을 질감특징분석과 ROC curve 분석을 하였으며, 컴퓨터보조진단시스템의 구현을 위한 실험적인 선형 연구로서 전산화단층촬영 영상에서 지방간의 객관적이고 신뢰성 있는 진단 정보를 의사에게 제공하고자 하였다. 실험은 정상 및 지방간 복부 전산화단층촬영 영상을 실험영상으로 하여 설정된 구역에 대한 wavelet 변환을 거쳐 질감의 특징값을 나타내는 6가지 파라미터로 통계적 분석 결과를 나타내었다. 그 결과 엔트로피, 평균밝기, 왜곡도는 90% 이상의 비교적 높은 인식률을 보였고, 대조도, 평탄도, 균일도는 약 70% 정도로 비교적 낮은 인식률을 나타내었다. ROC curve를 이용한 분석에서 6가지의 파라미터 모두 0.900(p=0.0001)이상을 나타내어 질환인식에 의미가 있는 결과를 나타내었다. 또한 6가지 파라미터에서 질환 예측을 위한 cut-off 값을 결정하였다. 이러한 결과는 향후 복부 전산화단층촬영 영상에서 질환 자동검출 및 최종진단의 예비 진단 자료로서 적용 가능할 것이다.
Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.
진단용 X선 기기는 다양한 장치의 개발에 힘입어 보다 효과적이고 정밀한 진단이 가능하게 되었다. 정밀 진단이 가능하게 되면서 X선 기기는 임상의학에 있어 가장 기본적이고 핵심적인 진단 장치로 자리 잡고 있다. X선을 이용한 영상획득 분야에서는 영상의 획득 시간 단축과 전송이 용이하고, 조사선량의 감소가 가능한 DR(Digital Radiography)의 사용이 확대되고 있다. 하지만 DR은 1개의 디텍터를 이용하는 구조로 되어있어 기존의 X선 장치와는 달리 구조적인 변경이 필요하며 촬영위치에 따라 디텍터를 원하는 위치까지 움직여야하는 단점을 가진다. 따라서 본 연구에서는 BLDC 모터와 PID 제어방식을 사용해 DR에서 가장 움직임이 많은 디텍터의 상하, 좌우, 회전의 3축 위치자동 제어 시스템을 설계 제작하고 그 성능을 평가 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.