• Title/Summary/Keyword: Automatic Defect Detection

Search Result 68, Processing Time 0.019 seconds

Automatic Defect Detection from SEM Images of Wafers using Component Tree

  • Kim, Sunghyon;Oh, Il-seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2017
  • In this paper, we propose a novel defect detection method using component tree representations of scanning electron microscopy (SEM) images. The component tree contains rich information about the topological structure of images such as the stiffness of intensity changes, area, and volume of the lobes. This information can be used effectively in detecting suspicious defect areas. A quasi-linear algorithm is available for constructing the component tree and computing these attributes. In this paper, we modify the original component tree algorithm to be suitable for our defect detection application. First, we exclude pixels that are near the ground level during the initial stage of component tree construction. Next, we detect significant lobes based on multiple attributes and edge information. Our experiments performed with actual SEM wafer images show promising results. For a $1000{\times}1000$ image, the proposed algorithm performed the whole process in 1.36 seconds.

Effective Construction Method of Defect Size Distribution Using AOI Data: Application for Semiconductor and LCD Manufacturing (AOI 데이터를 이용한 효과적인 Defect Size Distribution 구축방법: 반도체와 LCD생산 응용)

  • Ha, Chung-Hun
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.151-160
    • /
    • 2008
  • Defect size distribution is a probability density function for the defects that occur on wafers or glasses during semiconductor/LCD fabrication. It is one of the most important information to estimate manufacturing yield using well-known statistical estimation methods. The defects are detected by automatic optical inspection (AOI) facilities. However, the data that is provided from AOI is not accurate due to resolution of AOI and its defect detection mechanism. It causes distortion of defect size distribution and results in wrong estimation of the manufacturing yield. In this paper, I suggest a size conversion method and a maximum likelihood estimator to overcome the vague defect size information of AOI. The methods are verified by the Monte Carlo simulation that is constructed as similar as real situation.

Implementation of Paper Cutting Defect Detection System Based on Local Binary Pattern Analysis (국부 이진 패턴 분석에 기초한 지절 결함 검출 시스템 구현)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 2013
  • Paper manufacturing industries have huge facilities with automatic equipments. Especially, in order to improve the efficiency of the paper manufacturing processes, it is necessary to detect the paper cutting defect effectively and to classify the causes correctly. In this paper, we review the problems of web monitoring system and web inspection system that have been traditionally used in industries for defect detection. Then we propose a novel paper cutting defect detection method based on the local binary pattern analysis and its implementation to mitigate the practical problems in industry environment. The proposed algorithm classifies the defects into edge-type and region-type and then it is shown that the proposed system works stably on the real paper cutting defect detection system.

Automatic Detection Method for Mura Defects on Display Films Using Morphological Image Processing and Labeling

  • Cho, Sung-Je;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.234-239
    • /
    • 2014
  • This paper proposes a new automatic detection method to inspect mura defects on display film surface using morphological image processing and labeling. This automatic detection method for mura defects on display films comprises 3 phases of preprocessing with morphological image processing, Gabor filtering, and labeling. Since distorted results could be obtained with the presence of non-uniform illumination, preprocessing step reduces illumination components using morphological image processing. In Gabor filtering, mura images are created with binary coded mura components using Gabor filters. Subsequently, labeling is a final phase of finding the mura defect area using the difference between large mura defects and values in the periphery. To evaluate the accuracy of the proposed detection method, detection rate was assessed by applying the method in 200 display film samples. As a result, the detection rate was high at about 95.5%. Moreover, the study was able to acquire reliable results using the Semu index for luminance mura in image quality inspection.

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

Ultimate Defect Detection Using Run Length Coding in Automatic Vision Inspection System (영상기반 자동검사시스템에서 Run Length Coding을 이용한 한도 결함 검출 전처리 기법)

  • Joo, Younjg-Bok;Kwon, Oh-Young;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Automated Vision Inspection (AVI) systems automatically detect any defect feature in a surface image. The performance of the system can be measured under a special circumstances such as ultimate defect detection. In this situation, the defect signal level is similar to noise level and it becomes hard to make a solid decision with AVI systems. In this paper, we propose an effective preprocessing technique to enhance SNR (Signal to Noise Ratio). The method is motivated by some principles of HVS (Human Visual System) and RLC (Run Length Coding) techniques is used for this purpose. The proposed preprocessing technique enhances SNR under ultimate defect conditions and improves overall performance of AVI system.

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

Optical Design and Construction of Narrow Band Eliminating Spatial Filter for On-line Defect Detection (온라인 결함계측용 협대역 제거형 공간필터의 최적설계 및 제작)

  • 전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.59-67
    • /
    • 1998
  • A quick and automatic detection with no harm to the goods is very important task for improving quality control, process control and labour reduction. In real fields of industry, defect detection is mostly accomplished by skillful workers. A narrow band eliminating spatial filter having characteristics of removing the specified spatial frequency is developed by the author, and it is proved that the filter has an excellent ability for on-line and real time detection of surface defect. By the way,. this spatial filter shows a ripple phenominum in filtering characteristics. So, it is necessary to remove the ripple component for the improvement of filter gain, moreover efficiency of defect detection. The spatial filtering method has a remarkable feature which means that it is able to set up weighting function for its own sake, and which can to obtain the best signal relating to the purpose of the measurement. Hence, having an eye on such feature, theoretical analysis is carried out at first for optimal design of narrow band eliminating spatial filter, and secondly, on the basis of above results spatial filter is manufactured, and finally advanced effectiveness of spatial filter is evaluated experimentally.

  • PDF

Development of Automatic Precision Inspection System for Defect Detection of Photovoltaic Wafer (태양광 웨이퍼의 결함검출을 위한 자동 정밀검사 시스템 개발)

  • Baik, Seung-Yeb
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.666-672
    • /
    • 2011
  • In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.

Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System (자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.