• Title/Summary/Keyword: Automatic Damage Analysis

Search Result 78, Processing Time 0.026 seconds

Analysis on Effective Range of Temperature Observation Network for Evaluating Urban Thermal Environment (도시 열환경 평가를 위한 기온관측망 영향범위 분석)

  • Kim, Hyomin;Park, Chan;Jung, Seunghyun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.69-75
    • /
    • 2016
  • Climate change has resulted in the urban heat island (UHI) effect throughout the globe, contributing to heat-related illness and fatalities. In order to reduce such damage, it is necessary to improve the climate observation network for precise observation of the urban thermal environment and quick UHI forecasting system. Purpose: This study analyzed the effective range of the climate observation network and the distribution of the existing Automatic Weather Stations (AWS) in Seoul to propose optimal locations for additional installment of AWS. Method: First, we performed quality analysis to pinpoint missing values and outliers within the high-density temperature data measured. With the result from the analysis, a spatial autocorrelation structure in the temperature data was tested to draw the effective range and correlation distance for each major time period. Result: As a result, it turned out that the optimal effective range for the climate observation network in Seoul in July was a radius of 2.8 kilometers. Based on this result, population density, and temperature data, we selected the locations for additional installment of AWS. This study is expected to be used to generate urban temperature maps, select and move measurement locations since it is able to suggest valid, specific spatial ranges when the data measured in point is converted into surface data.

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Analysis of the Maximum Pressure Difference of PSI(pound per square inch) depending on the Size of the Y-shape Connecting Tube of the Automatic Contrast Medium Injector (CT 검사 시 조영제 자동주입기 Y자 연결관의 크기에 따른 PSI(pound per square inch)의 차이 분석)

  • Kim, Hyeon-jin;Im, In-chul
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.247-252
    • /
    • 2017
  • Radiologists who experience extravasation of the contrast medium even once suffer mentally during testing due to the fear of its reoccurrence. Establishing a plan for preventing it beforehand is necessary above all because patients experience severe physical and mental pain and become distrusting of medical staff and treatment. Therefore, the present study attempts to prevent extravasation, which is the result of damage from pressure applied to the patient's blood vessels, by lowering PSI, and conducted a comparative analysis of PSI changes during contrast medium injection depending on the diameter of the Y-shape connecting tube which connects the automatic injector and the intravenous injection of the patient. In the case of product A in which the diameter of the Y-shape connecting tube is about 2mm, the average PSI for all ages was 98.5 and standard deviation was 9.72. In the case of product B in which the diameter of the Y-shape connecting tube is about 3mm, the average PSI for all ages was 62.0 and standard deviation was 8.59. Product B with its wider diameter decreased in average pressure by 37.05% when compared to product A, and when product B is used with the p-value at 0.00, pressure decreased even more, achieving statistically significant results.

Design of Automatic Classification System of Black Plastics Based on Support Vector Machine Using Raman Spectroscopy (라만분광법을 이용한 SVM 기반 흑색 플라스틱 자동 분류 시스템의 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.

Marine Disasters Prediction System Model Using Marine Environment Monitoring (해양환경 모니터링을 이용한 해양재해 예측 시스템 모델)

  • Park, Sun;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.263-270
    • /
    • 2013
  • Recently, the prediction and analysis technology of marine environment are actively being studied since the ocean resources in the world is taken notice. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. However the studies of the marine environment monitoring and analysis system are limited in South Korea. In this paper, we study the marine disasters prediction system model to analyze collection marine information of out sea and near sea. This paper proposes the models for the marine disasters prediction system as communication system model, a marine environment data monitoring system model, prediction and analyzing system model, and situations propagation system model. The red tide prediction model and summarizing and analyzing model is proposed for prediction and analyzing system model.

The Change Detection from High-resolution Satellite Imagery Using Floating Window Method (이동창 방식에 의한 고해상도 위성영상에서의 변화탐지)

  • Im, Yeong-Jae;Ye, Cheol-Su;Kim, Gyeong-Ok
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-122
    • /
    • 2002
  • Change detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, change detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by lower middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

A Fundamental Study for the Automatic Control System in Greenhouse Using Microcomputer(III) -A variation of temperature and humidity by the window opening ways of the even-Span type house- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(III) -양지붕형 하우스의 창 개방방법에 따른 온.습도의 변화-)

  • 김진현;김철수;구건효;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • The ventilation in greenhouse have been important for such as adjustment of temperature, supplying of the oxygen, prevention of the overhumidity, density adjustment of $CO_2$, discharge of harmfulness gas, etc. However, the general ventilation which had been used the quantitative control method in discharge of a property of air mechanism in greenhouse, and caused mainly in waste of the heating energy and growth obstacle of the vegetable. Therefore, this study was peformed to obtain more scientific ventilation method using by analysis and measurement of the isothermal lines according to opening of window ventilation in greenhouse, and the results are summarized as follows. 1. The ventilating amount was more influenced by rather opening amount of window than the ventilating time. 2. In window ventilation, the temperature in greenhouse was mostly changed within 5 minutes after ventilating not regard to the spot of opening, after about 10 minutes temperature became to equilibrium state under the respective ventilating conditions. 3. In opening of the skylight only, isothermal lines were complicated, therefore, a tall vegetable may be possible to damage by a cold-weather from the lower central port in greenhouse. 4. Isothermal lines were a tendency to simply in opening of a side window that may be more effective ventilation in kinds of the short vegetable. 5. In conditions of internal temperature>setting temperature>external temperature, a skylight can be suitable to open 10~20cm in order to the optimum ventilation in greenhouse. 6. In conditions of internal temperature>external temperature>setting temperature, opening of all the windows or both the side windows that can be suitable in order to obtain the optimum ventilation in greenhouse. 7. An effect of ventilation was the most excellent to open of all the windows or both the side windows, and it were also found orderly excellent to open of the side window and the skylight or the skylight only, to open of the side window only. 8. Temperature was varied as the equation of T=Tc+ (To-Tc)e-at, and the ranges of (a) values were limited within 0.34~0.68. 9. A variations of humidity were similar to that of temperature, s.

  • PDF

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis (망막색소변성 데이터의 예후 예측을 위한 패턴 분류)

  • Kim, Hyun-Mi;Woo, Yong-Tae;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.