• 제목/요약/키워드: Automated machine learning

Search Result 195, Processing Time 0.024 seconds

Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance (시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.5-12
    • /
    • 2021
  • The deterioration of facilities is an unavoidable phenomenon. For the management of aging facilities, cracks can be detected and tracked, and the condition of the facilities can be indirectly inferred. Therefore, crack detection plays a crucial role in the management of aged facilities. Conventional maintenances are conducted using the crack detection results. For example, maintenance activities to prevent further deterioration can be performed. However, currently, most crack detection relies only on human judgment, so if the area of the facility is large, cost and time are excessively used, and different judgment results may occur depending on the expert's competence, it causes reliability problems. This paper proposes a concrete crack detection framework based on machine learning to overcome these limitations. Fully automated concrete crack detection was possible through the proposed framework, which showed a high accuracy of 96%. It is expected that effective and efficient management will be possible through the proposed framework in this paper.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

Automatic Detection of Sleep Stages based on Accelerometer Signals from a Wristband

  • Yeo, Minsoo;Koo, Yong Seo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, we suggest an automated sleep scoring method using machine learning algorithms on accelerometer data from a wristband device. For an experiment, 36 subjects slept for about eight hours while polysomnography (PSG) data and accelerometer data were simultaneously recorded. After the experiments, the recorded signals from the subjects were preprocessed, and significant features for sleep stages were extracted. The extracted features were classified into each sleep stage using five machine learning algorithms. For validation of our approach, the obtained results were compared with PSG scoring results evaluated by sleep clinicians. Both accuracy and specificity yielded over 90 percent, and sensitivity was between 50 and 80 percent. In order to investigate the relevance between features and PSG scoring results, information gains were calculated. As a result, the features that had the lowest and highest information gain were skewness and band energy, respectively. In conclusion, the sleep stages were classified using the top 10 significant features with high information gain.

Lightweight Named Entity Extraction for Korean Short Message Service Text

  • Seon, Choong-Nyoung;Yoo, Jin-Hwan;Kim, Hark-Soo;Kim, Ji-Hwan;Seo, Jung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.560-574
    • /
    • 2011
  • In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.

Automated Classification of Unknown Smart Contracts of Ethereum Using Machine Learning (기계학습을 활용한 이더리움 미확인 스마트 컨트랙트 자동 분류 방안)

  • Lee, Donggun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1319-1328
    • /
    • 2018
  • A blockchain system developed for crypto-currency has attractive characteristics, such as de-centralization, distributed ledger, and partial anonymity, making itself adopted in various fields. Among those characteristics, partial anonymity strongly assures privacy of users, but side effects such as abuse of crime are also appearing, and so countermeasures for circumventing such abuse have been studied continuously. In this paper, we propose a machine-learning based method for classifying smart contracts in Ethereum regarding their functions and design patterns and for identifying user behaviors according to them.

A Cross-Platform Malware Variant Classification based on Image Representation

  • Naeem, Hamad;Guo, Bing;Ullah, Farhan;Naeem, Muhammad Rashid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3756-3777
    • /
    • 2019
  • Recent internet development is helping malware researchers to generate malicious code variants through automated tools. Due to this reason, the number of malicious variants is increasing day by day. Consequently, the performance improvement in malware analysis is the critical requirement to stop the rapid expansion of malware. The existing research proved that the similarities among malware variants could be used for detection and family classification. In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed that converted malware binary into a grayscale image. Further, malicious features extracted from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, these features used to identify the relevant family of malware variant. CP-MVCS reduced computational time and improved classification accuracy by using CSGM feature description along machine learning classification. The experiment performed on four publically available datasets of Windows OS and Android OS. The experimental results showed that the computation time and malware classification accuracy of CP-MVCS was higher than traditional methods. The evaluation also showed that CP-MVCS was not only differentiated families of malware variants but also identified both malware and benign samples in mix fashion efficiently.

An Automated Production System Design for Natural Language Processing Models Using Korean Pre-trained Model (한국어 사전학습 모델을 활용한 자연어 처리 모델 자동 산출 시스템 설계)

  • Jihyoung Jang;Hoyoon Choi;Gun-woo Lee;Myung-seok Choi;Charmgil Hong
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.613-618
    • /
    • 2022
  • 효과적인 자연어 처리를 위해 제안된 Transformer 구조의 등장 이후, 이를 활용한 대규모 언어 모델이자 사전학습 모델인 BERT, GPT, OPT 등이 공개되었고, 이들을 한국어에 보다 특화한 KoBERT, KoGPT 등의 사전학습 모델이 공개되었다. 자연어 처리 모델의 확보를 위한 학습 자원이 늘어나고 있지만, 사전학습 모델을 각종 응용작업에 적용하기 위해서는 데이터 준비, 코드 작성, 파인 튜닝 및 저장과 같은 복잡한 절차를 수행해야 하며, 이는 다수의 응용 사용자에게 여전히 도전적인 과정으로, 올바른 결과를 도출하는 것은 쉽지 않다. 이러한 어려움을 완화시키고, 다양한 기계 학습 모델을 사용자 데이터에 보다 쉽게 적용할 수 있도록 AutoML으로 통칭되는 자동 하이퍼파라미터 탐색, 모델 구조 탐색 등의 기법이 고안되고 있다. 본 연구에서는 한국어 사전학습 모델과 한국어 텍스트 데이터를 사용한 자연어 처리 모델 산출 과정을 정형화 및 절차화하여, 궁극적으로 목표로 하는 예측 모델을 자동으로 산출하는 시스템의 설계를 소개한다.

  • PDF

Collision Hazards Detection for Construction Workers Safety Using Equipment Sound Data

  • Elelu, Kehinde;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.736-743
    • /
    • 2022
  • Construction workers experience a high rate of fatal incidents from mobile equipment in the industry. One of the major causes is the decline in the acoustic condition of workers due to the constant exposure to construction noise. Previous studies have proposed various ways in which audio sensing and machine learning techniques can be used to track equipment's movement on the construction site but not on the audibility of safety signals. This study develops a novel framework to help automate safety surveillance in the construction site. This is done by detecting the audio sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of imminent dangers of mobile equipment. The scope of this study is focused on developing a signal processing model to help improve the audible sense of mobile equipment for workers. This study includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-based machine learning model for automated detection of collision hazards to be integrated into intelligent hearing protection devices, and (c) conduct field experiments to investigate the system' efficiency and latency. The outcomes showed that the proposed model detects equipment correctly and can timely notify the workers of hazardous situations.

  • PDF

A Discussion on AI-based Automated Picture Creations (인공지능기반의 자동 창작 영상에 관한 논구)

  • Junghoe Kim;Joonsung Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.723-730
    • /
    • 2024
  • In order to trace the changes in the concept and understanding of automatically generated images, this study analogously explores the creative methods of photography and cinema, which represent the existing image fields, in terms of AI-based image creation methods and 'automaticity', and discusses the understanding and possibilities of new automatic image creation. At the time of the invention of photography and cinema, the field of 'automatic creation' was established for them in comparison to traditional art genres such as painting. Recently, as AI has been applied to video production, the concept of 'automatic creation' has been expanded, and experimental creations that freely cross the boundaries of literature, art, photography, and film are active. By utilizing technologies such as machine learning and deep learning, AI automated creation allows AI to perform the creative process independently. Automated creation using AI can greatly improve efficiency, but it also risks compromising the personal and subjective nature of art. The problem stems from the fact that AI cannot completely replace human creativity.