• Title/Summary/Keyword: Automated analysis system

Search Result 846, Processing Time 0.028 seconds

The Structural and Fatigue Analysis for the Bogie Frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 구조 및 피로해석)

  • 유형선;권혁수;윤성호
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Two representative types of the AGT (Automated Guideway Transit) system, which are bogie and steering types, are available for the side-guided system. Each system primarily consists of the bogie frame, suspensions, wheelsets and axles, braking system and transmission system. Among these components, the bogie frame is one of the most significant components subjected to the whole vehicle and passenger loads. This paper describes structural analyses and associated fatigue analyses for each bogie frame depending on the various loading conditions on a basis of the railway vehicle code UIC 515-4. Subsequently, comparisons are made between those two types to estimate which type is more reliable in terms of strength and fatigue. It is observed that the bogie type is a little advantageous over the steering one from the strength analysis. However, the two types are found to be in a reliable range of fatigue even though a realistic fatigue load case is further carried out. In addition, an optimal size of thickness is suggested for designs of the bogie frame.

  • PDF

Automated Safety Planning of Scaffolding-Related Hazards in Building Information Modeling (BIM)

  • Kim, Kyungki;Cho, Yong
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.255-258
    • /
    • 2015
  • Scaffolds are frequently used in construction projects. Despite the impact on the entire safety, scaffolds are rarely analyzed as part of the safety planning. While recent advances in BIM (Building Information Modeling) provides opportunity to address potential safety issues in the early planning stages, it is still labor-intensive and challenging to incorporate scaffolds into current manual jobsite safety analysis which is time-consuming and error-prone. Consequently, potential safety hazards related to scaffolds are identified and presented during the construction phase. The objective of this research is to integrate scaffolds into automated safety analysis using BIM. A safety checking system was created to simulate the movements of scaffolds along the paths of crews using the scaffolds. Algorithms in the system automatically identify safety hazards related to activities working on scaffolds. Then, the system was implemented in a commercially available BIM software program for case studies. The results show that the algorithms successfully identified safety hazards that were not noticed by project managers of the projects. The results were visualized in BIM to facilitate early safety communications.

  • PDF

An Automated Classification and Coding System for Structure of Injection Mold (사출금형구조의 자동분류코딩시스템의 개발)

  • Cho, Kyu-Kab;Jung, Young-Deug;Oh, Soo-Cheol;Jung, Hyun-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.60-67
    • /
    • 1989
  • An automated classification and coding system for structure of injection mold is developed based on the statistical analysis and the critical evaluation of the results for the sample survey of 200 assembly drawings of injection mold. The proposed system is a mixed code system consisting of 15 digits and each digit consists of 10 numerical codes. An interactive computer program is developed by using TURBO PASCAL on IBM PC/AT compatible system. A case study is discussed to show the procedure and the function of the system. The results for applications of the system to real problems show that the system works well and is useful for design, manufacturing and management of injection mold.

  • PDF

The development of a fully automated homemade system for [11C] acetate synthesis using an open source PLC

  • Kang, Se Hun;Hong, Sung Tack;Park, Kwangseo;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.103-107
    • /
    • 2016
  • Solid phase extraction (SPE) purification method is the efficient and well-known tool for automated [$^{11}C$]acetate synthesis. A fully automated homemade module adopting the SPE method and 'pinch' valves was developed very economically with a universal interface board, a relay card and an open source programmable logic controller. The radiochemical yield of the optimized [$^{11}C$]acetate synthesis by this system was $58.8{\pm}2.1%$ (n=10, decay-corrected) from $15.5{\pm}0.19GBq$ of $[^{11}C]CO_2$ as starting activity, and total synthetic time was 15 minutes. HPLC analysis showed its high radiochemical purity as $97.4{\pm}1.1%$ without possible by-products.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Design and Analysis of a New Shift Automation Mechanism for Automated Manual Transmission (AMT용 새로운 변속자동 메커니즘 설계 및 해석)

  • Kim, Jung-Yun;Kim, Gi-Dae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • This article proposes a novel shift automation mechanism for an automated manual transmission (AMT). The development of an automated manual transmission is currently being paid considerable attention by vehicle manufacturers, with the prospects of combining the comfort of an automatic transmission and the high efficiency of a manual transmission. In order to automate the shift mechanism of a manual transmission, the proposed shift automation mechanism consists of two electric motors, cross shaped pinion gears, rack type shift rails, and a ball splined hollow shaft. First we describe the shift mechanism and operating principles of a manual transmission to investigate important design criteria for the shift automation device. And a new shift automation mechanism is described with its structure, elements, and operating principles in detail. Using a conventional manual transmission, we develop a full three-dimensional CAD model of an AMT which includes main components of the manual transmission and the designed shift automation mechanism. Finally we investigate the operating performances and feasibility of the designed AMT by a dynamic analysis.

Relational Logic Definition of Articles and Sentences in Korean Building Code for the Automated Building Permit System (인허가관련 설계품질검토 자동화를 위한 건축법규 문장 관계논리에 관한 연구)

  • Kim, Hyunjung;Lee, Jin-Kook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • This paper aims to define the relational logic of in-between code articles as well as within atomic sentences in Korean Building Code, as an intermediate research and development process for the automated building permit system of Korea. The approach depicted in this paper enables the software developers to figure out the logical relations in order to compose KBimCode and its databases. KBimCode is a computer-readable form of Korean Building Code sentences based on a logic rule-based mechanism. Two types of relational logic definition are described in this paper. First type is a logic definition of relation between code sentences. Due to the complexity of Korean Building code structure that consists of decree, regulation or ordinance, an intensive analysis of sentence relations has been performed. Code sentences have a relation based on delegation or reference each other. Another type is a relational logic definition in a code sentence based on translated atomic sentence(TAS) which is an explicit form of atomic sentence(AS). The analysis has been performed because the natural language has intrinsic ambiguity which hinders interpreting embedded meaning of Building Code. Thus, both analyses have been conducted for capturing accurate meaning of building permit-related requirements as a part of the logic rule-based mechanism.

Object-Oriented Modelling for Automated HAZOP Analysis (HAZOP 분석 자동화를 위한 객체지향 모델링)

  • 이진명;허보경;황규석
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • Hazard and operability (HAZOP) analysis is one of the safety analysis method that is used in the chemical complex, because it can systematically identify causes and consequences of all the deviation that could occur. Since this method needs to hire specialized experts, it is costly and time-consuming. Therefore HAZOP Expert System has been developed to automate this analysis. This approach introduced object-oriented method and knowledge representation which is hierarchical tree of units to supply flexibility in the system, functional semantic network, propagation equation and rule-chaining method to set up the expert system for automating HAZOP analysis.

  • PDF

Research on a Development of Power System Analysis Software Considering User Convenience (사용자 편의성을 고려한 전력계통 해석 프로그램 개발 연구)

  • Ko, Baekkyeong;Song, Jiyoung;Han, Sangwook;Lee, Jaegul;Shin, Jeonghoon;An, Youngho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Power system engineers use power systems solution programs such as PSS/E, DSATool, Power World simulators for power system analysis. In this reason, KEPCO has begun to develop independent power system program, KW-PSS(KEPCO World Power system Solution) since 2002 and KW-PSS ver2.0 development was completed in 2011. However, it did not have much better functions compared with other programs. Therefore, we focused on the development of the practical and specialized functions. Consequently, PAZ(Power system AnalyZer) ver3.0 has been developed and it realized a differentiation than previous version. In other words, previous version focused on the basic function of power system analysis, PAZ ver3.0 has implemented many automated functions for power system operators were driven maximize operational efficiency. The unique feature of the implementation is as follows : Automated check for exceeding the breaker capacity, Scheduled outage automation, Control-file wizard for various voltage stability analysis, Scenario-based multiple transient stability analysis and Auto calculation of transmission line impedance. As shown in these functions, Those functions provide to use power system analysis easily by automation and simplification for power system engineers. We will secure national expertise through PAZ ver3.0. In addition it will be able to gain competitive edge through the steady development in the world market.

Development of the Automated Calculation System for Air-Bearing Spindle (공기 베어링 주축의 자동설계시스템 개발)

  • Chernopyatov Y.A.;Chung W.J.;Dolotov K.S.;Kim D.S.;Lee C.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.38-48
    • /
    • 2004
  • Recently the use of high-speed equipment in machine-tool industry has greatly increased, which requires the development of prognostics and prediction methods on the design stage. Conversion of the test/experiments stage from real to virtual reality will not only significantly reduce the design and manufacturing cost, but will also increase design quality. This paper shows how it is possible to develop the automated system for the design calculations of the air-bearing spindles. First, the general calculation method is introduced. It contains several steps, namely, geometry identification, pressure calculation, stiffiness calculation, dynamics characteristics calculation. For geometry identification reducing spindle shaft to rings was proposed, which helps to automate the calculation process. For pressure calculation the Peshti method was implemented. For stiffiness calculation the analysis was made, which shown the necessity of correct calculation step selection. Then the system of ordinary differential equations containing influence coefficients was evolved, which is used for trjectories calculation. The graphical representation of the calculation results shows the dynamic behavior of the spindle unit concerning various working conditions. Finally, this automated system is illustrated by an example of the air-bearing spindle calculation.