• Title/Summary/Keyword: Automated Guide Vehicle(AGV)

Search Result 17, Processing Time 0.025 seconds

Path Control Algorithm for AGV Using Right of Path Occupation (경로 점유권을 이용한 AGV의 경로 제어 알고리즘)

  • Joo, Young-Hoon;Kim, Jong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.592-598
    • /
    • 2008
  • This paper presents collision prediction and avoidance method for AGVS (Automatic Guide Vehicle System). Also, we propose the PO(Right of Path Occupying) with decentralized delay time for collision avoidance. Classified essential element of AGV's working environment is modeled in this paper. Using this model, we propose a new shortest path algorithm using A* search algorithm and obtain the information on AGVs travel time, coordinates and rotation vector. Finally, we use the AGVs information data as input for simulation program. The simulation practice is used in order to evaluate a collision prediction and avoidance, and it has been presented to demonstrate the applicability of the minimize delay time.

Shortest Path Searching Algorithm for AGV Based on Working Environmental Model (작업환경 모델 기반 AGV의 최단 경로 탐색 알고리즘)

  • Joo, Young-Hoon;Kim, Jong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.654-659
    • /
    • 2007
  • This paper proposes the effective method for classifying the working spates and modelling the environments, when complex working environments of AGVS(Automated Guided Vehicle System) ate changed. And, we propose the shortest path searching algorithm using the A* algorithm of graph search method. Also, we propose the methods for finding each AGV's travel time of shortest path. Finally, a simple example is included for visualizing the feasibility of the proposed methods.

The Development of The Automated Container Terminal Simulator for Evaluating of AGV Guide Path and AGV Numbers (첨단 자동화 컨테이너 터미널의 AGV 이동경로 평가 및 적정 운영 대수 산정을 위한 시뮬레이터 개발)

  • 민상규;정귀훈;하승진;김형식;변성태;이영석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.152-157
    • /
    • 2002
  • 본 연구에서는 컨테이너 터미널의 자동화 설비 중 안벽용 크레인(Quay Crane: QC)과 장치장용 크레인(Automated Transfer Crance: ATC)간의 컨테이너 이송을 담당하는 AGV(Automated Guided Vehicle)의 운영에 관한 시뮬레이션을 수행할 수 있는 전용의 시 뮬레이터를 개발하는데 목적은 두고 수행하였다. 자동화 컨테이너 터미널의 처리 능력은 선석의 QC 능력에 의해서 결정되지만, QC의 능력을 최적화하기 위해서는 컨테이너 터미널 내에서의 AGV의 운영 효율이 결정적인 역할을 한다. 또한 AGV의 운영 효율에는 장치장의 ATC 작업시간이 영향을 준다. 연구결과, AGV의 운영 효율 평가를 위한 시뮬레이터를 개발하였으며, 이를 이용하여 QC의 작업시간과 ATC의 작업시간에 따른 AGV의 적정대수를 산출하였다. 본 시뮬레이터는 실제 컨테이너 터미널의 운영 상대와 유사한 시뮬레이션을 수행할 수 있고, 컨데이니 터미널의 운영 능력을 산출하는데 적합하도록 개발되었다.

  • PDF

A Study on the Driving Control for the Automated Guided Vehicle using Microprocessor (마이크로 프로세서를 이용한 무인운반차량의 주행제어에 관한 연구)

  • Kim, B.K.;Kim, J.T.;Kim, Y.S.;Oh, H.C.;Lee, H.K.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.432-434
    • /
    • 1998
  • Recently, For the material transport is increased, the AGV(Automated Guided Vehicle) is the most important part in the industrial factory. So we treat the navigation control problem and experimental results using microprocessor. In navigation control, we have faced with velocity control problem related to guide path tracking problem. Carefully, In the straight line, the AGV moves at its high speed, but in the curve line, especially when the radian ratio is very big it is difficult to follow guide line. So, Using fuzzy controller we have simulated the guide path following AGV according to the varying velocity and experimented it with microprocessor.(Intel 80C196KC) Now, If we use the AGV industrial factory, we will improve the product and efficiency in spite of changing the factory environment.

  • PDF

A Study on the Path-tracking of an Automated Guided Vehicle Using Digital PD Controller (PD제어기를 이용한 AGV의 경로추종에 관한 연구)

  • Lee, Jong-Sung;Won, Young-Jin;Seong, Hong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1037-1038
    • /
    • 2006
  • This paper treats the guide path tracking problem of an experimental automated guided vehicle. An experimental guide path is made of aluminium foil which has width of 2[cm]. A digital Proportional and Derivative controller is used to manipulate the steering system and it is verified by laboratory experiments that the designed AGV tracks the guide path withen the range of 3.2[cm] deviation.

  • PDF

Detection of AGV's position and orientation using laser slit beam (회전 Laser 슬릿 빔을 이용한 AGV의 위치 및 자세의 검출)

  • 박건국;김선호;박경택;안중환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • The major movement block of the containers have range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of its movement in conventional container terminal. In automated container terminal, AGV(Automated Guided Vehicle) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The automated container terminal facilities must have the docking system to guide landing line to have high speed travelling and precision positioning. The general method for docking system uses the vision system with CCD camera, infra red, and laser. This paper describes the detection of AGV's position and orientation using laser slit beam to develop docking system.

  • PDF

Inter-loop Stocker Automated Material Handling Systems (Inter-loop Stocker 자동 물류시스템)

  • Jo, Min-Ho
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 1997
  • Less researches on AGV(Automated Guided Vehicle) path configurations have been conducted so far while more studies have been placed in determining AGV guide path directions and pick-up/drop-off station locations, and routing/dispatching/scheduling strategies. In practice plenty of concerns fall in preventing deadlock and simplifying AGV system control through an appropriate AGV path configuration. In order to meet those requirements, a new AGV path configuration, inter-loop stocker type is introduced here. The stocker serves as relaying material between loops as well as stocking material. Automated material handling systems using AGVs play an important role in semiconductor industry including TFT LCD and memory/non-memory chip. A practical example of implementing the inter-loop stocker concept successfully in the TFT LCD fab is presented in this paper.

  • PDF

Guide-Path Design for Automated Guided Vehicles (AGV 유도경로 설계에 관한 연구)

  • Choe, H.;Jung, M.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.121-139
    • /
    • 1992
  • AGVS(Automated Guided Vehicle Systems) in material handling have been used widely since late 1970s. Implementation of an AGVS generally requires substantial study to optimize the design and performance of guide-paths. Traditional mathematical approaches have been used with limited success to analyze AGVS. These approaches, however, do not provide a practical tool for guide-path designers. This paper presents a new approach based on rules in designing and assessing AGV guide-paths to improve the design of a closed-loop layout. A framework for the integrated approach is proposed, problem solving procedures are explained, and a case study is reported to demonstrate the framework. Deletion of seldom used guide-paths, and addition of bypasses to solve the congestion problem, are conducted interactively and iteratively through simulation experiments. To visualize the results, a graphic control program is developed and integrated with the AutoMod/AutoGram simulation package.

  • PDF

Precise Tracking control of Automated Guided Vehicle System (무인반송 차량시스템의 정밀 추적제어)

  • Shin, Doo-Jin;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.313-317
    • /
    • 2001
  • This paper proposed a fuzzy logic cross coupled controller which can enhance the path tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV follows the guide path, it cannot be avoid the deviation from the path due to the inevitable error and the deviation must be corrected. Optically guided AGV used in industrial area is controlled by On-Off controller generally, the experimental AGV has three optical sensors in front body. In this structure, we could not know the leaving distance accurately and steering angle from the guided line, so AGV could not be controlled properly with conventional controller in the case of increasing or decreasing velocity. If we mount additional sensors the AGV, we could know the leaving distance and steering angle from the guided line and proper error compensating methode can be applied. But because cost of sensors are high, the cost of total system is increasing. So, in this paper, to improve the tracking performance of AGV which has the minimum number of sensors and fuzzy logic cross coupled controller is proposed. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

Collision Avoidance and Deadlock Resolution for AGVs in an Automated Container Terminal (자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안)

  • Kang, Jae-Ho;Choi, Lee;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.25-43
    • /
    • 2005
  • In modern automated container terminals, automated guided vehicle (AGV) systems are considered a viable option for the horizontal tansportation of containers between the stacking yard and the quayside cranes. AGVs in a container terminal move rather freely and do not follow fixed guide paths. For an efficient operation of such AGVs, however, a sophisticated traffic management system is required. Although the flexible routing scheme allows us to find the shortest possible routes for each of the AGVs, it may incur many coincidental encounters and path intersections of the AGVs, leading to collisions or deadlocks. However, the computational cost of perfect prediction and avoidance of deadlocks is prohibitively expensive for a real time application. In this paper, we propose a traffic control method that predicts and avoids some simple, but at the same time the most frequently occurring, cases of deadlocks between two AGVs. More complicated deadlock situations are not predicted ahead of time but detected and resolved after they occur. Our method is computationally cheap and readily applicable to real time applications. The efficiency and effectiveness of our proposed methods have been validated by simulation.

  • PDF