• Title/Summary/Keyword: Automated

Search Result 5,538, Processing Time 0.034 seconds

Effect of Soil Temperatures on Seedling Emergence in Direct Seeding on Dry Paddy (벼 건답직파에서 파종기 지온이 출아에 미치는 영향)

  • Soh, Chang-Ho;Yun, Jin-Il;Rho, Yeong-Deok;Kim, Moo-Sung;Kwon, Shin-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.580-586
    • /
    • 1995
  • Soil temperatures at depths of 1~5cm are important to the germination and emergence of dry seeded-rice. An automated weather station was used to monitor the hourly weather parameters at Experiment Farm, Kyung Hee University from April 21 to May 30 in 1994. The data was analyzed to figure out the 24-hour temporal changes in air 1.5m above ground and soil temperatures under ground of 0, 2.5, 5, 10 and 20cm. The fluctuations of soil temperature were greatest at the soil surface and decreased with increasing depth. Mean soil temperatures at depth of 2.5cm were about 3$^{\circ}C$ higher than mean air temperatures during the observation period. Although mean soil temperatures at depth of 2.5cm during 10 or 15 days after April 21, May 1 and May 11 showed almost same temperatures, the distribution patterns of temperature regime were different from each other. Rice cultivars, Hwasung, Seohae, Nampung, IR60 and CR155, were seeded at depth of 2.5cm on April 21, May 1 and May 11, respectively. The periods of seedling emergence(PSE) varied in accordance with cultivars and seeding dates. PSE was correlated with accumulated daily mean air temperatures and accumulated hours classified by temperature regimes.

  • PDF

Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning (머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발)

  • Yeong-Woo Lim;Ji-Yeon Eom;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.307-325
    • /
    • 2023
  • Due to the prolonged COVID-19 pandemic, the frequency of people who are tired of living indoors visiting nearby mountains and national parks to relieve depression and lethargy has exploded. There is a place where thousands of people who came out of nature stop walking and breathe and rest, that is the mineral spring. Even in mountains or national parks, there are about 600 mineral springs that can be found occasionally in neighboring parks or trails in the metropolitan area. However, due to irregular and manual water quality tests, people drink mineral water without knowing the test results in real time. Therefore, in this study, we intend to develop a model that can predict the quality of the spring water in real time by exploring the factors affecting the quality of the spring water and collecting data scattered in various places. After limiting the regions to Seoul and Gyeonggi-do due to the limitations of data collection, we obtained data on water quality tests from 2015 to 2020 for about 300 mineral springs in 18 cities where data management is well performed. A total of 10 factors were finally selected after two rounds of review among various factors that are considered to affect the suitability of the mineral spring water quality. Using AutoML, an automated machine learning technology that has recently been attracting attention, we derived the top 5 models based on prediction performance among about 20 machine learning methods. Among them, the catboost model has the highest performance with a prediction classification accuracy of 75.26%. In addition, as a result of examining the absolute influence of the variables used in the analysis through the SHAP method on the prediction, the most important factor was whether or not a water quality test was judged nonconforming in the previous water quality test. It was confirmed that the temperature on the day of the inspection and the altitude of the mineral spring had an influence on whether the water quality was unsuitable.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Calculation of Damage to Whole Crop Corn Yield by Abnormal Climate Using Machine Learning (기계학습모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량에 미치는 피해 산정)

  • Ji Yung Kim;Jae Seong Choi;Hyun Wook Jo;Moonju Kim;Byong Wan Kim;Kyung Il Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study was conducted to estimate the damage of Whole Crop Corn (WCC; Zea Mays L.) according to abnormal climate using machine learning as the Representative Concentration Pathway (RCP) 4.5 and present the damage through mapping. The collected WCC data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. The machine learning model used DeepCrossing. The damage was calculated using climate data from the automated synoptic observing system (ASOS, 95 sites) by machine learning. The calculation of damage was the difference between the dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCC data (1978-2017). The level of abnormal climate by temperature and precipitation was set as RCP 4.5 standard. The DMYnormal ranged from 13,845-19,347 kg/ha. The damage of WCC which was differed depending on the region and level of abnormal climate where abnormal temperature and precipitation occurred. The damage of abnormal temperature in 2050 and 2100 ranged from -263 to 360 and -1,023 to 92 kg/ha, respectively. The damage of abnormal precipitation in 2050 and 2100 was ranged from -17 to 2 and -12 to 2 kg/ha, respectively. The maximum damage was 360 kg/ha that the abnormal temperature in 2050. As the average monthly temperature increases, the DMY of WCC tends to increase. The damage calculated through the RCP 4.5 standard was presented as a mapping using QGIS. Although this study applied the scenario in which greenhouse gas reduction was carried out, additional research needs to be conducted applying an RCP scenario in which greenhouse gas reduction is not performed.

Safety and Efficacy of Ultrasound-Guided Percutaneous Core Needle Biopsy of Pancreatic and Peripancreatic Lesions Adjacent to Critical Vessels (주요 혈관 근처의 췌장 또는 췌장 주위 병변에 대한 초음파 유도하 경피적 중심 바늘 생검의 안전성과 효율성)

  • Sun Hwa Chung;Hyun Ji Kang;Hyo Jeong Lee;Jin Sil Kim;Jeong Kyong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1207-1217
    • /
    • 2021
  • Purpose To evaluate the safety and efficacy of ultrasound-guided percutaneous core needle biopsy (USPCB) of pancreatic and peripancreatic lesions adjacent to critical vessels. Materials and Methods Data were collected retrospectively from 162 patients who underwent USPCB of the pancreas (n = 98), the peripancreatic area adjacent to the portal vein, the paraaortic area adjacent to pancreatic uncinate (n = 34), and lesions on the third duodenal portion (n = 30) during a 10-year period. An automated biopsy gun with an 18-gauge needle was used for biopsies under US guidance. The USPCB results were compared with those of the final follow-up imaging performed postoperatively. The diagnostic accuracy and major complication rate of the USPCB were calculated. Multiple factors were evaluated for the prediction of successful biopsies using univariate and multivariate analyses. Results The histopathologic diagnosis from USPCB was correct in 149 (92%) patients. The major complication rate was 3%. Four cases of mesenteric hematomas and one intramural hematoma of the duodenum occurred during the study period. The following factors were significantly associated with successful biopsies: a transmesenteric biopsy route rather than a transgastric or transenteric route; good visualization of targets; and evaluation of the entire US pathway. In addition, the number of biopsies required was less when the biopsy was successful. Conclusion USPCB demonstrated high diagnostic accuracy and a low complication rate for the histopathologic diagnosis of pancreatic and peripancreatic lesions adjacent to critical vessels.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

Implementing RPA for Digital to Intelligent(D2I) (디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현)

  • Dong-Jin Choi
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.143-156
    • /
    • 2019
  • Types of innovation can be categorized into simplification, information, automation, and intelligence. Intelligence is the highest level of innovation, and RPA can be seen as one of intelligence. Robotic Process Automation(RPA), a software robot with artificial intelligence, is an example of intelligence that is suited for simple, repetitive, large-scale transaction processing tasks. The RPA, which is already in operation in many companies in Korea, shows what needs to be done to naturally focus on the core tasks in a situation where the need for a strong organizational culture is increasing and the emphasis is on voluntary leadership, strong teamwork and execution, and a professional working culture. The introduction was considered naturally according to the need to find. Robotic Process Automation, or RPA, is a technology that replaces human tasks with the goal of quickly and efficiently handling structural tasks. RPA is implemented through software robots that mimic humans using software such as ERP systems or productivity tools. RPA robots are software installed on a computer and are called robots by the principle of operation. RPA is integrated throughout the IT system through the front end, unlike traditional software that communicates with other IT systems through the back end. In practice, this means that software robots use IT systems in the same way as humans, repeat the correct steps, and respond to events on the computer screen instead of communicating with the system's application programming interface(API). Designing software that mimics humans to communicate with other software can be less intuitive, but there are many advantages to this approach. First, you can integrate RPA with virtually any software you use, regardless of your openness to third-party applications. Many enterprise IT systems are proprietary because they do not have many common APIs, and their ability to communicate with other systems is severely limited, but RPA solves this problem. Second, RPA can be implemented in a very short time. Traditional software development methods, such as enterprise software integration, are relatively time consuming, but RPAs can be implemented in a relatively short period of two to four weeks. Third, automated processes through software robots can be easily modified by system users. While traditional approaches require advanced coding techniques to drastically modify how they work, RPA can be instructed by modifying relatively simple logical statements, or by modifying screen captures or graphical process charts of human-run processes. This makes RPA very versatile and flexible. This RPA is a good example of the application of digital to intelligence(D2I).

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.