• Title/Summary/Keyword: Autocorrelation matrix

Search Result 49, Processing Time 0.028 seconds

The Bias of the Least Squares Estimator of Variance, the Autocorrelation of the Regressor Matrix, and the Autocorrelation of Disturbances

  • Jeong, Ki-Jun
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 1983
  • The least squares estimator of disturbance variance in a regression model is biased under a serial correlation. Under the assumption of an AR(I), Theil(1971) crudely related the bias with the autocorrelation of the disturbances and the autocorrelation of the explanatory variable for a simple regression. In this paper we derive a relation which relates the bias with the autocorrelation of disturbances and the autocorrelation of explanatory variables for a multiple regression with improved precision.

  • PDF

Estimating Three-Dimensional Scattering Centers of a Target Using the 3D MEMP Method in Radar Target Recognition (레이다 표적 인식에서 3D MEMP 기법을 이용한 표적의 3차원 산란점 예측)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.

Modeling of random effects covariance matrix in marginalized random effects models

  • Lee, Keunbaik;Kim, Seolhwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.815-825
    • /
    • 2016
  • Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.

Generation of Synthetic Time Series Wind Speed Data using Second-Order Markov Chain Model (2차 마르코프 사슬 모델을 이용한 시계열 인공 풍속 자료의 생성)

  • Ki-Wahn Ryu
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2023
  • In this study, synthetic time series wind data was generated numerically using a second-order Markov chain. One year of wind data in 2020 measured by the AWS on Wido Island was used to investigate the statistics for measured wind data. Both the transition probability matrix and the cumulative transition probability matrix for annual hourly mean wind speed were obtained through statistical analysis. Probability density distribution along the wind speed and autocorrelation according to time were compared with the first- and the second-order Markov chains with various lengths of time series wind data. Probability density distributions for measured wind data and synthetic wind data using the first- and the second-order Markov chains were also compared to each other. For the case of the second-order Markov chain, some improvement of the autocorrelation was verified. It turns out that the autocorrelation converges to zero according to increasing the wind speed when the data size is sufficiently large. The generation of artificial wind data is expected to be useful as input data for virtual digital twin wind turbines.

Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model (일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰)

  • Kim, Jiyeong;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2015
  • Generalized linear mixed models are used to analyze longitudinal categorical data. Random effects specify the serial dependence of repeated outcomes in these models; however, the estimation of a random effects covariance matrix is challenging because of many parameters in the matrix and the estimated covariance matrix should satisfy positive definiteness. Several approaches to model the random effects covariance matrix are proposed to overcome these restrictions: modified Cholesky decomposition, moving average Cholesky decomposition, and partial autocorrelation approaches. We review several approaches and present potential future work.

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

Power Spectral Estimation of Background EEG with LMS PHD (LMS PHD에 의한 배경단파 파워 스펙트럼 추정)

  • 정명진;최갑석
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.101-108
    • /
    • 1988
  • In this paper the power spectrum of background EEG is estimated by the LMS PHD based on least mean square. At the power spectrum estimatiom, the stocastic process of background EEG is assumed to consist of the nonharmonic sinusoid and the white noise. In the LMS PHD the model parameters are obtained by the least mean square at optimal order which is obtained from the fact that the eigenvalue's fluctuation of autocorrelation matrix of the normal back-ground EEG is smaller at some order than at other order when the power spectrum of background EEG is esitmated by PHD. The optimal order of this model is the 6-th order when the eigenvalue's fluctuation of autocorrelation matrix of background EEG is considered. The estimation results are with compared the results from the Maximum Entropy Spectral Estimation and Pisarenko Harmonic Decomposition. From the comparison results. The LMS PHD is possible to estimate the power spectrum of background EEG.

  • PDF

Suggestion of the Parallel Algorithm for the Signal Estimation in the Wavelet Transform Domain (웨이브렛 변환평면에서의 병렬 신호 추정 알고리듬의 제안)

  • 김종원;김성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1188-1197
    • /
    • 1995
  • This paper describes an algorithm that reduces computational requirement of the Kalman filter and estimates the signal efficiently. The reference signals are mapped onto the orthogonal wavelet transform domain so that the eigenvalue spread of its autocorrelation matrix could be smaller than that in the time domain. In the wavelet transform domain the autocorrelation matrix is nearly diagonal. Therefore, the transformed signal can be decomposed each orthogonal elements. The Kalman filter can be applied to each orthogonal elements and computational requirement is reduced. The possibility of applying the parallel Kalman filter was verified through the theory and simulation. The eigenvalue spread in the wavelet transform domain is smaller 8.35 times than that in the time domain and the computational requirement is reduced from 1.4 times to 2. 93 times than that of the conventional Kalman filter.

  • PDF

Equivalence of GLS and Difference Estimator in the Linear Regression Model under Seasonally Autocorrelated Disturbances

  • Seuck Heun Song;Jong Hyup Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.112-118
    • /
    • 1994
  • The generalized least squares estimator in the linear regression model is equivalent to difference estimator irrespective of the particular form of the regressor matrix when the disturbances are generated by a seasonally autoregressive provess and autocorrelation is closed to unity.

  • PDF

A Beamformer for Antenna Arrays with Faulty Elements (결함 소자가 존재하는 안테나 배열을 위한 빔 형성기)

  • Kim, Gi-Man;Cha, Il-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.12-15
    • /
    • 1996
  • An array often has faulty elements in real operation. The faulty elements, producing no output or highly reduced gain than other normal elements, cause an elevated sidelobe level and fail to reject the interference signals in an adaptive beamformer. In this paper we have presented the beamforming algorithm for arrays with faulty elements. In the ideal case, an autocorrelation matrix computed from array output data is the toeplitz. However, the inverse of the autocorrelation matrix computed from array with faulty elements can not be obtained due to deficient values of matrix. To overcome this problem, an adaptive beamforming algorithm using the average values of the diagonal terms of matrix is proposed. The computer simulations have been performed to study the performance of the presented method. We have been able to solve the degrees-of-freedom problem that is the drawback of the previous subaperture processing technique.

  • PDF