• Title/Summary/Keyword: Auto-vehicle

Search Result 614, Processing Time 0.027 seconds

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

A Study on the Safety of Hybrid Tuning for Light-duty Diesel Trucks (소형경유트럭의 하이브리드 튜닝 안전성에 관한 연구)

  • Jeon, Sangwoo;Kwon, Manjae;An, Hosoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.20-25
    • /
    • 2021
  • This paper is the result of a research on hybrid tuning technology developed to improve the actual fuel efficiency and reduce emissions of in-use light-duty diesel trucks. In this study, a hybrid powertrain was constructed by inserting an electric motor between the diesel engine and manual transmission of an internal combustion engine vehicle and installing a battery. To verify the safety, a test was conducted based on the Korean tuning regulations. In particular, since there has been no case of tuning an internal combustion engine vehicle into a hybrid vehicle in Korea, it was necessary to carry out all procedures to receive tuning approval. The approval process consists of a technical review, safety verification test, and application for tuning approval. As a result, the test vehicle was approved for tuning because both the technical review and vehicle test results were suitable. Therefore, this study confirmed the safety of diesel hybrid tuning technology, and laid the foundation for the research and development of technologies to tune into an eco-friendly vehicle as well as the activation of related industries.

A Study on the Test Method of Autonomous Vehicle for Fixed Targets (고정목표에 대한 자율주행자동차 시험방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.6-16
    • /
    • 2022
  • Recent, the issue of the fourth industrial revolution triggered by technological advances has changed the automobile industry centered on internal combustion engines, and quantitative growth of the global automobile market, which has grown rapidly, has been slowing since 2015. These advances in technology are expected to develop beyond the advanced driver assistance system to autonomous driving technology. According to SAE-J3016 published by the Society of Automotive Engineers, the technology of autonomous vehicles is divided into a total of six stages according to the driver's intervention and automation level from 0 to 5. Securing safety for autonomous vehicles is important. But, research on safety evaluation theory and autonomous vehicle evaluation method based on real vehicle test is insufficient. In this study, the longitudinal distance theory equation and continuous test scenario were proposed for the test method of autonomous vehicles for fixed targets, and the real vehicle test was conducted. When comparing the theoretical values compared to the measured values, it was determined that it was reliable with a minimum error rate of 0.484% and a maximum error rate of 7.391%. Using the proposed theoretical equation, it is judged that it can be used as a safety evaluation method in an environment where real vehicle test is not possible because it can grasp the trend in the longitudinal direction in the development stage.

Application of Multi Criteria Decision Making for Selection of Automobile Safety Option (안전 옵션 선정 다준규의사결정 모델)

  • Kim, Taehee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 2018
  • Choosing automobile safety options is price-performance matter. The best fit options to buyer who has a certain driving habit are problem of MCDM (Multi Criteria Decision Making) because price of safety option, statistics of relating accident, consequence of accident, and driving habit are the multi criteria to be evaluated. In this paper, PROMETHEE-GAIA methodology is applied for solving this MCDM problem. The result shows that a different driving habit makes different choosing priority of safety options.

Improvement of Structure for Single-piece Side-otr reinforcement applied Hot-stamping (일체형 핫스템핑 사이드 아우터 레인프 개선 구조 연구)

  • Lee, Hae Hoon;Wee, Sung Gae;Kim, Won Gun;Park, Dae Myoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • This research is to optimize Single-Piece Side otr reinforcement using Hot-stamping and to strengthen weak regions on Single-Piece Side otr reinforcement. As a consequence, the weight and the number of parts were reduced and resulting in improvement of impact and stiffness performance when compared to multi-piece construction.

The Optimized Knee Bolster Structure for US-NCAP (북미 강화NCAP 무릎상해 대응용 최적 니볼스터 구조 연구)

  • Paek, Chang In;Choi, Kyu Sang;Jung, Jae Yoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • The US-NCAP was rated by the head and chest injury, but the new US-NCAP requires various dummy injury parts such as head, neck, chest, and femur. So, new restraint systems are needed. Particularly, the knee bolster must meet both unbelted and belted test condition requirements. This paper analyzed the dummy response of both test condition and suggested a knee bolster F-D requirement as well as a new knee bolster structure.

Design of auto-depth control system for low speed submersible vehicle (미속 수중함의 자동심도 제어장치 설계 연구)

  • 조현진;최중락;김흥열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.776-779
    • /
    • 1992
  • This paper describes the auto-depth control system with depth control tank for low speed submersible vehicle that can be used for both near surface and deeply submerged keeping operations. The PDA control algorithm is used to design controller and adaptive notch filter is designed to eliminate the dominant frequency of seaway. The computer simulations demonstrate the excellent depth keeping performance of the controller under seaway effects.

  • PDF

Connection Structure Between Center Pillar and Roof Center Rail (거셋일체형 센터필러 어퍼 루프레일 연결구조 개발)

  • Lee, Hae Hoon;Chung, Pil Sang;Kang, Chong Ku
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.26-32
    • /
    • 2021
  • This study is intended to augment the Roof strength test being evaluated by IIHS (Insurance Institute for Highway Safety). In order to find solutions for increasing Roof Crashworthiness Evaluation SWR (Strengthto-weight ratio). This study introduces that Integrated Connection Structure Between Center Pillar and Roof Center Rail is proposed as a critical solution.

Development of Analysis Method for Pedestrian Headform Movement (보행자보호 머리거동 분석방법 개발)

  • Jeon Hae Young;Peak Chang In;Jang Hyun Kwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Motion Analysis of pedestrian headform was first applied in this paper for the purpose of determining the relationship between stiffness of hood and HIC. Since the analysis of headform movement involves rotation, it has been problematic if analysis of the headform movement is made in local coordinate system only. Correlation of test and simulation is expected to be enhanced through the development of New type of Head Movement Analysis Method.