• Title/Summary/Keyword: Auto-focus Control

Search Result 37, Processing Time 0.029 seconds

A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control (퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구)

  • Ahn, Byeongwon;Lee, Hui-Bae;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.531-537
    • /
    • 2015
  • In order to maximize power output from the solar panels, one needs to keep the panels aligned with the sun. So solar tracker having high reliability must be designed. This paper cares about the design and evaluation of a two-axis solar tracker system based on fuzzy logic control with LabVIEW. The research focus on planning mechanical parts, making an intelligent controller which controls and monitors all parameters via user interface implemented of a fuzzy decision support system for control of photovoltaic panel movement. We also develop a real solar tracker system and analyze the influence indexes such as environment, weather, season, and light condition. The solar tracker is tested in real condition and all parameters related to the system operation are recorded and analyzed. The developed solar tracking system got a much higher efficiency about 38 % compare to fixed solar panel although the weather condition is affected a lot to the solar panel. So we confirmed the our auto tracking system is more effective and can allow more energy to be produced.

A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP) (RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구)

  • Choe Jae-Il;Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

Empirical Modeling of Lens Distortion in Change of Focal Length (초점거리 변화에 따른 렌즈 왜곡의 경험적 모델링)

  • Jeong, Seong-Su;Woo, Sun-Kyu;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.93-100
    • /
    • 2008
  • The parameters of lens such as focal length, focus, and aperture stop changes while shooting the scenes with zoom lens. Especially, zooming action dramatically changes the geometry of lens system that causes significant change of lens model. We investigated how the lens model changes while zooming in general shooting condition. Each parameters of lens model was estimated and checked whether they can be modeled well in the condition of auto-controlling focus, aperture and vibration reduction. In order to do this, calibration images were taken, modeled in different fecal length setting. And changing patterns of models were inspected to find out if there is some elements that have some particular pattern in changing with respect to focal length. The result showed us that although we didn't control the focus and aperture setting, there's specific changing patterns in radial and do-centering distortion. Especially, the strong linear correlation was found between coefficient of $r^2$ and focal length. It is expected that many parts of distortion can be eliminated without additional self calibration even if zoom operation is done when shooting the scenes if we know its fecal length and model of this coefficient.

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

Applications of Smartphone Cameras in Agriculture, Environment, and Food: A review

  • Kwon, Ojun;Park, Tusan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.330-338
    • /
    • 2017
  • Purpose: The smartphone is actively being used in many research fields, primarily in medical and diagnostic applications. However, there are cases in which smartphone-based systems have been developed for agriculture, environment, and food applications. The purpose of this review is to summarize the research cases using smartphone cameras in agriculture, environment, and food. Methods: This review introduces seventeen research cases which used smartphone cameras in agriculture, food, water, and soil applications. These were classified as systems involving "smartphone-camera-alone" and "smartphone camera with optical accessories". Results: Detecting food-borne pathogens, analyzing the quality of foods, monitoring water quality and safety, gathering information regarding plant growth or damage, identifying weeds, and measuring soil loss after rain were presented for the smartphone-camera-alone system. Measuring food and water quality and safety, phenotyping seeds, and soil classifications were presented for the smartphone camera with optical accessories. Conclusions: Smartphone cameras were applied in various areas for several purposes. The use of smartphone cameras has advantages regarding high-resolution imaging, manual or auto exposure and focus control, ease of use, portability, image storage, and most importantly, programmability. The studies discussed were achieved by sensitivity improvements of CCDs (charge-coupled devices) and CMOS (complementary metal-oxide-semiconductor) on smartphone cameras and improved computing power of the smartphone, respectively. A smartphone camera-based system can be used with ease, low cost, in near-real-time, and on-site. This review article presents the applications and potential of the smartphone and the smartphone camera used for various purposes in agriculture, environment, and food.

Development of KHU Automatic Observing Software for McDonald 30inch telescope (KAOS30)

  • Ji, Tae-Geun;Byeon, Seoyeon;Lee, Hye-In;Jung, Hyunsoo;Lee, Sang-Yun;Hwang, Sungyong;Choi, Changsu;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2017
  • Automatic observing is the most efficient system for sky surveys that image many targets over large areas of the sky. Such a system requires the integrating control software that systematically manages astronomical instruments that are not connected to each other. In February of 2017, we installed a wide-field 10 inch telescope for Supernovae survey on the McDonald 30 inch telescope as a piggyback system. However, during the observations, information such as target coordinates could not be exchanged with the telescope mount. The reason is the program that controls the telescope control system (TCS) and the program that controls the imager operate on independent PCs. KAOS30 is an integrated observing software developed to improve this environment. The software is composed of four packages that are the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). The TCP communicates to the TCS and also communicates weather information. SMP supports automatic observing in a script mode, which improves the efficiency of the survey. KAOS30 was developed based on Visual C ++ and runs on the Windows operating system. It also supports the ASCOM driver platform for various manufacturers. The instruments that support ASCOM can be installed without modification of the program code. KAOS30 can be applied as software for many different telescopes in future projects.

  • PDF

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.