• Title/Summary/Keyword: Auto Level Tuning

Search Result 14, Processing Time 0.03 seconds

Study for Charge-Discharge Auto Level-Tuning Algorithm of Energy storage system (에너지저장시스템의 충, 방전 Auto Level-Tuning 알고리즘에 관한 연구)

  • Baek, Seoung-Gil;Lim, Ji-Young;Cha, Joon-Il;Kim, Kil-Dong;Kwon, Kyoung-Min
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.514-520
    • /
    • 2010
  • This paper is about control algorithms that bi-direction DC-DC Converter using Super Capacitor and regenerative power from DC feeding system in train. In order to take advantage of regenerative energy efficient, charge and discharge level value of energy storage system serve as an important factor. Respect to output fluctuations of the substation and catenary voltage changing, we offers Charge-Discharge Auto Level Tuning Algorithms to improve system following of Energy Storage System.

  • PDF

Auto-tuning of boiler drum level controller in Thermal Power Plant (화력 발전소 보일러 드럼수위 제어기의 자동 동조)

  • Lee, J.H.;Joo, H.Y.;Byun, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2584-2586
    • /
    • 2000
  • A drum level control is one of the most important control systems in thermal power plant. The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant set-point regardless of disturbance such as main steam flow. The implemented drum level controller is the cascade PI controller. The important factor in drum level controller is the parameters of two PI controllers. The tuning of PI controller parameter is tedious and time-consuming job. In this paper, the relay feedback Ziegler - Nichols tuning method extended to auto-tune cascade PI drum level controller. Finally, the simulation result using boiler model in Power Plant shows the validity of auto-tuned cascade PI controller.

  • PDF

Development of GUI-program for Auto-tuning PID controller using relay feedback and Application of level-temperature plant (릴레이 궤환을 이용한 자동동조 PID 제어기의 GUI-Program 개발과 수위온도제어 플랜트에의 실시간 적용)

  • Yoo, Byong-Chul;Han, Jin-Wook;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.609-611
    • /
    • 1999
  • The purpose of this research is on figuring out the optimal PID parameter using critical gain and critical frequency that are obtained by relay feedback. The operating has been done under the condition that the least information about the object plant is given and also the operating is processed within the limit which dose not give rise to bad influence on the object plant. For simulation auto-tuning PID controller using relay feedback which also works on on-line at the same time is developed by the upper procedure. This algorithm is tried to apply to level-temperature control plant on a real time with PC Interface Card.

  • PDF

Fuzzy control with auto-tuning scaling factor (스켈링 계수 자동조정을 통한 퍼지제어)

  • 정명환;정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.123-128
    • /
    • 1992
  • This paper presents an autotuning algorithm of scaling factor in order to improve system performance. We define the scaling factor of fuzzy controller as a function of error and error change. This function is tuned by the output of performance evaluation level utilizing the error of overshoot and rising time. Simulation results show that the proposed algorithm has good tuning performance for a system with parameter change.

  • PDF

Model-Free Longitudinal Acceleration Controller Design and Implementation Quickly and Easily Applicable for Different Control Interfaces of Automated Vehicles Considering Unknown Disturbances (자율 주행 제어 인터페이스에 강건하며 빠르고 쉽게 적용 가능한 모델 독립식 종 방향 가속도 제어기 개발 및 성능 검증)

  • Seo, Dabin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.39-52
    • /
    • 2021
  • This paper presents a longitudinal acceleration controller that can be applied to real vehicles (nonlinear and time-varing systems) with only a simple experiment regardless of the type of vehicle and the control interface structure. The controller consists of a feedforward term for fast response, a zero-throttle acceleration compensation term, and a feedback term (P gain) to compensate for errors in the feedforward term, and another feedback term (I gain) to respond to disturbances such as slope. In order to easily apply it to real vehicles, there are only two tuning parameters, feedforward terms of throttle and brake control. And the remaining parameters can be calculated immediately when the two parameters are decided. The tuning procedure is also unified so that it can be quickly and easily applied to various vehicles. The performance of the controller was evaluated using MATLAB/Simulink and Truksim's European Ben model. In addition, the controller was successfully implemented to 3 medium-sized vehicle (HMC Solati), which is composed of different control interface characteristic. Vehicle driving performance was evaluated on the test track and on the urban roads in Siheung and Seoul.

Control of Coupled Tank Level using GA-SMC (GA-SMC를 이용한 이중 탱크의 정밀한 수위 제어)

  • 박현철;지석준;정종원;최우진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.239-244
    • /
    • 2002
  • Even though, tanks are used at the many industry plants, it is very difficult to control the tank level without any overflow and shortage; moreover, cause of its complication of dynamics and nonlinearity, it's impossible to realize the accurate control using the mathematical model which can be applied to the various operation modes. However, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control systems with the parametric perturbations and with the sudden disturbances, but the auto-tuning of parameters was a problem. Therefore, in this paper, a Genetic Algorithm based Sliding Mode Controller (GA-SMC) for the precise control of the coupled tank level was tried. GA optimized the SMCs switching parameters easily and rapidly. The simulation results are shown that the tank level could be satisfactorily controlled with less overshoot and steady-stale error by the proposed GA-SMC.

  • PDF

Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles (자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석)

  • Kim, Changhee;Lee, Dongpil;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF