• Title/Summary/Keyword: Austenitic manganese steel

Search Result 21, Processing Time 0.023 seconds

Corrosion Behavior of a High-Manganese Austenitic Alloy in Pure Zinc Bath

  • Yi, Zhang;Liu, Junyou;Wu, Chunjing
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to further reduce the cost without reducing the corrosion resistance, a high-manganese austenitic alloy for sink roll or stabilizer roll in continuous hot-dip coating lines was developed. A systematic study of corrosion behavior of the high-manganese austenitic alloy in pure zinc bath at $490^{\circ}C$ was carried out. The results shows that, the high-manganese austenitic alloy shows better corrosion resistance than 316L steel. The corrosion rate of the high-manganese austenitic alloy in pure zinc bath is calculated to be approximately $6.42{\times}10^{-4}g{\cdot}cm^{-2}{\cdot}h^{-1}$, while the 316L is $1.54{\times}10^{-3}g{\cdot}cm^{-2}{\cdot}h^{-1}$. The high-manganese austenitic alloy forms a three-phase intermetallic compound layer morphology containing ${\Gamma$}, ${\delta}$ and ${\zeta}$ phases, while the 316L is almost ${\zeta}$ phase. The ${\Gamma}$ and ${\delta}$ phases of the high-manganese austenitic alloy contain about 8.5 wt% Cr, the existence of Cr improve the stabilization of phases, which slow down the reaction of Fe and Zn, improve the corrosion resistance of the high-manganese austenitic alloy. So substitute the nickel with the manganese to manufacture the high-manganese austenitic alloy of low cost is feasible.

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

Hydrogen Embrittlement of Two Austenitic High-Manganese Steels Using Tensile Testing under High-Pressure Gaseous Hydrogen (고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가)

  • Lee, Seung-Yong;Baek, Un-Bong;Nam, Seung Hoon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.353-358
    • /
    • 2016
  • The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic high-manganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.

A Study on the critical cooling rate to avoid carbide precipitation in austenitic manganese steels during quenching (고망간 주강품의 열처리시 탄화물 석출방지를 위한 임계 냉각속도에 관한 연구)

  • Kim, Jeong-Tae;Kwahk, Si-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.206-214
    • /
    • 1999
  • The effect of cooling rate on carbide precipitation during quenching of austenitic manganese steel was investigated by optical microscopy, image analyzer and numerical analysis. A computer program based on the finite difference method for analyzing heat treatment processes was developed in order to evaluate cooling rates and the possibility of carbide precipitation during quenching. The area ratio of carbide precipitated in the austenite matrix was measured by the image analyzer, and used to determine the critical point of carbide precipitation. Temperature-dependent critical cooling rates at the critical points were calculated using the present simulation program, The calculated results showed a good agreement with the experimental ones.

  • PDF

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel (냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향)

  • Hwang, T.H.;Jung, M.H.;Lee, J.Y.;Lee, H.B.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

A Study on the Application of High Manganese Austenitic Steel Sheet to Automobile Parts (고망간 오스테나이트계 강판의 자동차 부품 적용성 연구)

  • Jung, Y.I.;Chae, S.H.;Kim, S.Y.;Hong, S.H.;Lim, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.393-396
    • /
    • 2009
  • The mechanical properties, press formability and texture of a TWIP steel were investigated. This steel combines both high strength and high ductility due to so called TWIP effect which are related to the microstructural changes. The formation of twins during deformation leads to an increase of its mechanical properties. In this study, the texture and mechanical properties evolutions of a TWIP steel subjected to tensile tests and press trials at room temperature were investigated in relation to the feasibility of the application to automotive body parts.

  • PDF

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.