• 제목/요약/키워드: Austenitic Weld

검색결과 114건 처리시간 0.023초

Laser 용접한 스테인리스강의 용접부위의 부식특성에 관한 평가 (Evaluation of Corrosion Property of Welding Zone of Stainless Steel by Laser Welding)

  • 문경만;원종필;박동현;김윤해;이명훈;김진경
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.64-69
    • /
    • 2012
  • Laser welding was carried out on austenitic 304 (STS 304) and 22 APU stainless steels. In this case, the differences between the corrosion characteristics of the welding zones of the two stainless steels were investigated using electrochemical methods. The Vickers hardness values of the weld metal (WM) zones in both cases, the STS 304 and 22 APU stainless steels, showed relatively higher values than those of other welding zones. The corrosion current densities of the heat affected zone (HAZ) of the 22 APU and the base metal (BM) zone of the STS 304 exhibited the highest values compared to the other welding zones. It is generally accepted that when STS 304 stainless steel is welded using a general welding method, intergranular corrosion is often observed at the grain boundary because of its chromium depletion area. However, when laser welding was performed on both the STS 304 and 22 APU stainless steels, no intergranular corrosion was observed at any of the welding zones. Consequently, it is considered that the intergranular corrosion of stainless steel can be controlled with the application of laser welding.

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

  • Chang, Hyun-Young;Park, Heung-Bae;Park, Yong-Soo;Kim, Soon-Tae;Kim, Young-Sik;Kim, Kwang-Tae;Jhang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.187-195
    • /
    • 2010
  • Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical & mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld & HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(${\alpha}$) and austenite(${\gamma}$) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants.

냉간성형 듀플렉스계 스테인리스강(STS329FLD) 용접접합부 모재 블록전단파단 거동 (Block Shear Behavior of Cold-Formed Duplex Stainless Steel (STS329FLD) Welded Connection with Base Metal Fracture)

  • 황보경;김태수
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, lean duplex stainless steel, STS329FLD with less nickel (reduced to 0.5~1.5%) has been developed as a substitute of austenitic stainless steel (8%~10.5% nickel in STS304) and included in Korean standards (KS). This paper investigates the block shear behavior of cold-formed duplex stainless steel (STS329FLD, nominal plate thickness of 1.5mm) fillet-welded connection with base metal fracture. Main variables are weld lengths in the longitudinal and the transverse directions of applied force ranged from 20mm to 50mm. As a result, specimens failed by typical block shear facture (the combination of gross section tensile fracture and shear fracture or shear yielding) and ultimate strength of the specimens got higher with the increase of weld length. Block shear fracture strengths predicted by current design specifications (KBC2016/AISC2016 and EC3) and existing proposed equations for welded connections by Topkaya, Oosterhof & Driver and Lee et al. were compared with test strengths. KBC2016/AISC2016 and EC3 design specifications underestimated block shear strength of STS329FLD welded connections by on average 24%, 29%, respectively and Oosterhof & Driver, Topkaya and Lee et al's equations overestimated the ultimate strength of the welded connection by the range of 3% to 44%.

압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화 (Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input-)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

액화천연가스 저장탱크 9% 니켈강 용접부의 방사선투과시험 필름에 나타나는 밴드형상의 지시 해석 (Interpretation for Band-Type Indication on Radiography of 9% Ni Steel Welds for LNG Storage Tanks)

  • 이승현;이승림;이영순
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.479-483
    • /
    • 2010
  • 초저온 액화가스인 LNG의 저장탱크에 사용되는 9% 니켈강은 Inconel 혹은 Hastelloy 계열 용접봉을 사용하여 용접되며, 용접부는 저합금강과 오스테나이트 스테인리스강의 이종금속 용접부와 유사한 특성을 가지고 있다. 용접부에 대한 방사선투과시험 시 용접조건에 따라 밴드형태의 지시가 방사선투과 필름 상에 나타나곤 한다. 따라서 본 연구에서는 이에 대한 해석을 위하여 재료, 방사선투과시험, 초음파탐상시험, 액체침투탐상시험 및 조직시험을 통하여 의사지시 여부를 확인하였으며, 방사선투과시험 해석 및 밴드형태 지시의 발생 원인을 제시하였다.

SUS 304강의 부식피로균열 운전속도 특성에 관한 연구 (Study on Characteristics of Corrosion Fatigue Crack Growh Rate of SUS 304 Stainlss Steel)

  • 임우조;김부안
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.93-100
    • /
    • 1987
  • Corrosion fatigue cracking of the austenitic stainless steel(bese metal & heat affected zone by TIG weld) was studied experimentally under the environments of various specific resistance and air. The characteristics of corrosion fatigue crack growth rate and the environmental constants of paris' rule were investigated for SUS 304 weldments in the various specific resistance. The influences of stress intensity factor range and corrosion on the crack growth rate were compared. The characteristics of corrosion fatigue cracking for the weldments were inspected from mechanical, electrochemical and microstructural point of view. Main results obtained are as follows: 1) As the specific resistance decreases, the environmental constant C of paris'rule increases(hence the corrosion fatigue crack growth rate is rapid), but the environmental constant m decreases, so the effect of corrosion to the crack growth rate is more susceptible than thet of stress intensity factor range. 2) As the stress intensity factor range decreases, the corrosion fatigue crack growth rate of heat affected zone is more susceptible than that of the base metal. 3) The corrosion fatigue crack growth rate of the heat affected zone is more rapid than that of the base metal, because of the phenomenon of softening and the less noble potential coused by wedlding heat cycle. 4) The corrosion fatigue cracking of SUS 304 weldment appears transgranular fracture.

  • PDF

GTAW Double Torch의 육성용접 공정최적화에 관한 연구 (A Study on the Overlay Welding Process Optimization of GTAW by Double Torch)

  • 임병철;손영산
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.73-78
    • /
    • 2016
  • 본 연구에서는 STS316 스테인리스강에 가스텅스텐아크용접을 수행하였다. 더블토치 장치를 이용하여 스텔라이트계 육성용접을 실시하였고, 다구찌 기법을 적용하여 경도 측정값에 대한 응답변수를 산출하여 공정 최적화를 도출하였다. 또한 이 공정변수가 육성용접의 특성에 미치는 영향을 분석하였다. 다구찌 기법에 의한 육성용접의 공정설계에 있어서 다중응답 변수를 고려한 최적공정설계는 매우 유효한 것을 확인할 수 있었다. 또한 각각의 응답변수에 대한 공정변수의 기여도 및 기여도에 대한 영향을 손쉽게 분석할 수 있었다. 육성용접에서 중요한 기계적 특성 요소인 경도값을 고려한 최적공정 조건은 전류 105 A, 전압 18V, 예열온도 $200^{\circ}C$, 후열온도 $100^{\circ}C$로 확인 되었다. 더블토치를 이용한 가스텅스텐아크용접의 최적조건에서 제작된 시험편의 경우 단일 토치를 사용 하였을 때 보다 더블토치를 사용하는 조건에 의해 제작된 시험편의 경우 경도는 8.19% 높은 양호한 특성을 나타내었다.

오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 2) - δ 페라이트 정출 및 응고편석 거동에 따른 응고균열 민감도 변화 - (Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 2) -Effects of δ-ferrite Crystallization and Solidification Segregation Behavior on Solidification Cracking Susceptibility-)

  • 천은준;이수진;서정;강남현
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.61-69
    • /
    • 2016
  • A numerical simulation of the solid/liquid coexistence temperature range, using solidification segregation model linked with the Kurz-Giovanola-Trivedi model, explained the mechanism of the BTR shrinkage (with an increase in welding speed) in type 310 stainless steel welds by reduction of the solid/liquid coexistence temperature range of the weld metal due to the inhibited solidification segregation of solute elements and promoted dendrite tip supercooling attributed to rapid solidification of laser beam welding. The reason why the BTR enlarged in type 316 series stainless welds could be clarified by the enhanced solidification segregation of impurity elements (S and P), corresponding to the decrement in ${\delta}-ferrite$ crystallization amount at the solidification completion stage in the laser welds. Furthermore, the greater increase in BTR with type 316-B steel was determined to be due to a larger decrease in ${\delta}-ferrite$ amount during welding solidification than with type 316-A steel. This, in turn, greatly increases the segregation of impurities, which is responsible for the greater temperature range of solid/liquid coexistence when using type 316-B steel.

가압경수로 노즐 맞대기 이종금속용접부의 용접잔류응력 예측 (Welding Residual Stress Distributions for Dissimilar Metal Nozzle Butt Welds in Pressurized Water Reactors)

  • 김지수;김주희;배홍열;오창영;김윤재;이경수;송태광
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.137-148
    • /
    • 2012
  • 가압경수로의 많은 관통관 중에서 니켈 기저 합금인 Inconel alloy 600 계열의 이종금속용접부는 일차수응력부식균열에 민감하며, 이를 평가하기 위하여 용접부에 작용하는 잔류응력분포를 정확히 예측하는 것이 중요하다. 본 논문에서는 유한요소해석을 이용하여 노즐 맞대기 이종금속용접부에 작용하는 일반적인 잔류응력분포를 예측하였다. 이를 위해 노즐 맞대기 이종금속용접부의 형상을 단순화하여 특정한 형상 변수에 따른 용접부 잔류응력분포를 확인하였으며, 이를 토대로 기존 문헌에 제시된 오스테나이트계 배관 맞대기 용접부 잔류응력 분포식을 수정하여 가압경수로 노즐 맞대기 이종금속용접부에 작용하는 일반적인 잔류응력분포 예측식을 제시하였다.