• Title/Summary/Keyword: Austenite phase

Search Result 235, Processing Time 0.029 seconds

Dilatometry Analysis of Low Carbon Steel considering Transformation Mismatch Plasticity (변태소성을 고려한 저탄소강 상변태의 Dilatometry 해석)

  • Suh D. W.;Oh C. S.;Kim S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.332-335
    • /
    • 2005
  • A model is developed to quantitatively analyze the dilatometry curve of carbon steel for the evaluation of phase fraction during transformation. The effect of anisotropic volume change due to transformation mismatch plasticity as well as carbon enrichment in austenite during the transformation is considered in the developed model. The developed model is applied for the analysis of dilatometry curves of carbon steels. The result shows that considering the anisotropic dilatation is very essential to quantitatively evaluate the phase fraction from the dilatation curve.

  • PDF

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite- (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태-)

  • Kim, O.S.;Song, G.H.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF NON-EQUIATOMIC HIGH ENTROPY ALLOY FeMnCoCr PREPARED BY SPARK PLASMA SINTERING

  • NAMHYUK SEO;JUNHYUB JEON;SEUNGGYU CHOI;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1005-1009
    • /
    • 2020
  • In this study, a non-equiatomic high entropy alloy was fabricated using the spark plasma sintering method, and its microstructural features and mechanical properties were investigated. The chemical composition of FeMnCoCr was determined by using the entropy calculation related to the design of high entropy alloys. A bulk sample with the same composition was also prepared using the conventional metallurgical processes of casting and hot rolling. The microstructures of the samples fabricated by these different processes were compared by microscope observation, and a quantitative phase analysis was carried out using FE-SEM. Hardness measurement was used to evaluate mechanical properties. Particular attention was paid to microstructural changes due to heat treatment, which was analyzed by considering how austenite stability is affected by grain refinement.

Effect of Microstructure on Fracture Behavior of Multi-phase Low-density Steel (다상계 저비중강의 파괴거동에 미치는 미세조직의 영향)

  • Shin, Sun-Kyoung;Park, Seong-Jun;Cho, Kyung Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.306-316
    • /
    • 2013
  • Microstructure and fracture behavior of a multi-phase low-density steel were investigated. After hot-rolling and heat treatment, the microstructure of low-density steel was composed of coarse ferrite grains and elongated bands which include second phases such as austenite, martensite and ${\kappa}$-carbide depending on holding time during isothermal heat treatment. After tensile test, microcracks were observed at martensite or ${\kappa}$-carbide interface in the elongated bands. Coarse ferrite grains showed cleavage fracture behavior regardless of second phase. The cleavage fracture of ferrite could be attributed to their coarse grain size and solute atoms that increase ductile-to-brittle transition temperature of ferrite. Despite of the tendency of cleavage fracture in coarse ferrite grains, a specimen having coarse spheroidized ${\kappa}$-carbide particles in the elongated bands showed high total elongation of 30%. Thus, the easiness of plastic deformation in the elongated band seems to play an important role in retardation of cleavage crack formation in coarse ferrite grains.

A study on the simulation of water cooling process for the prediction of plate deformation due to line heating

  • Nomoto, Toshiharu;Jang, Chang-Doo;Ha, Yun-Sok;Lee, Hae-Woo;Ko, Dae-Eun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • In a line heating process for hull forming, the phase of the steel transforms from austenite to martensite, bainite, ferrite, or pearlite depending on the actual speed of cooling following line heating. In order to simulate the water cooling process widely used in shipyards, a heat transfer analysis on the effects of impinging water jet, film boiling, and radiation was performed. From the above simulation it was possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision. Compared to the line heating experimental results, the simulated water cooling process method was verified to improve the predictability of the plate deformation due to line heating.

Effect of Cooling Rate on Microstructural and Mechanical Properties of SAF 2205 Duplex Stainless Steel (SAF 2205 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 냉각속도의 영향)

  • Oh, Y.J.;Yang, W.J.;Lee, J.H.;Kim, D.H.;Yoo, W.D.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • Duplex stainless steel, which is a kind of stainless steel with a mixed microstructure of about equal proportions of austenite and ferrite, is generally known as a unique material with excellent corrosion resistance and high strength. However, toughness, strength, and corrosion resistance of the steel could be reduced due to precipitation of topologically closed packed phases such as sigma phase during cooling. In case of large forged products, they have strong possibility that ${\sigma}$-phase precipitates due to difference of cooling rate between surface and inner of the products. Investigation on sigma phase precipitation behavior of duplex stainless steel with change of cooling rate was carried out in this study. Forged SAF 2205 duplex stainless steel was used as specimens to examine the cooling rate effect. Dissolution behavior of sigma phase was also discussed through resolution test of duplex stainless steel containing lots of sigma phase. Experimental results revealed that impact energy was very sensitive to precipitation of small amount sigma phase. However, sigma phase could be removed by short term resolution treatment and impact resistance of the duplex stainless steel was restored.

Behavior of Nitrogen in the Variation of Heat Treatment Conditions of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 열처리 조건변화에 따른 첨가원소 질소의 거동)

  • Joo, Dong Won;Sung, Jang Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.30-39
    • /
    • 1997
  • After changing the heat treating atmosphere of nitrogen gas, argon gas and vacuum, the nitrogen contents, microstructural changes, hardness and corrosion resistance of 0.25wt.%N alloyed super duplex stainless steel have been investigated in the temperature range from $1050^{\circ}C$ to $1350^{\circ}C$. The nitrogen content showed to be increased up to 0.36wt.% after heat treating the specimen in nitrogen gas at $1200^{\circ}C$, while the decrement of nitrogen content in vacuum atmosphere was shown down to 0.03wt.% at $1350^{\circ}C$. After heat treating in the mixed gas atmosphere of argon and nitrogen at $1250^{\circ}C$, the surface ${\gamma}$ phase existed as ${\alpha}+{\gamma}$ phase increased with increasing nitrogen gas content. The ${\gamma}$ single phase appeared at the surface above $80%N_2$ gas, while the surface ${\alpha}$ single phase was shown below $20%N_2$ gas. When heat treating the specimen in nitrogen gas at $1050^{\circ}C$, the hardness of austenite phases increased above Hv 40 at the surface layer compared to the hardness of the core parts, while decrement of denitriding effect caused to the hardness nearly unchanged between surface and the core parts after heat treating in vacuum atmosphere. The surface ${\gamma}$ single phase specimen showed superior corrosion resistance than the surface ${\alpha}$ single phase specimen. The surface ${\alpha}$ phase existed in the ${\alpha}+{\gamma}$ microstructure showed higher corrosion resistance after heat treating in the nitrogen gas atmosphere than the ${\alpha}$ phase heat treated in the argon gas and vacuum atmosphere.

  • PDF

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.

Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling (재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과)

  • Lee, Sang Woo;Choo, Wung Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF