DOI QR코드

DOI QR Code

Effect of Microstructure on Fracture Behavior of Multi-phase Low-density Steel

다상계 저비중강의 파괴거동에 미치는 미세조직의 영향

  • Shin, Sun-Kyoung (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Seong-Jun (Ferrous alloy department, Korea Institute of Materials Science) ;
  • Cho, Kyung Mox (School of Materials Science and Engineering, Pusan National University)
  • 신선경 (부산대학교 재료공학부) ;
  • 박성준 (한국기계연구원 부설 재료연구소 철강재료연구실) ;
  • 조경목 (부산대학교 재료공학부)
  • Received : 2013.09.27
  • Accepted : 2013.10.10
  • Published : 2013.11.30

Abstract

Microstructure and fracture behavior of a multi-phase low-density steel were investigated. After hot-rolling and heat treatment, the microstructure of low-density steel was composed of coarse ferrite grains and elongated bands which include second phases such as austenite, martensite and ${\kappa}$-carbide depending on holding time during isothermal heat treatment. After tensile test, microcracks were observed at martensite or ${\kappa}$-carbide interface in the elongated bands. Coarse ferrite grains showed cleavage fracture behavior regardless of second phase. The cleavage fracture of ferrite could be attributed to their coarse grain size and solute atoms that increase ductile-to-brittle transition temperature of ferrite. Despite of the tendency of cleavage fracture in coarse ferrite grains, a specimen having coarse spheroidized ${\kappa}$-carbide particles in the elongated bands showed high total elongation of 30%. Thus, the easiness of plastic deformation in the elongated band seems to play an important role in retardation of cleavage crack formation in coarse ferrite grains.

Keywords

References

  1. U. Brux, G. Frommeyer and J. Jimenez : Steel Res., 73 (2002) 543. https://doi.org/10.1002/srin.200200026
  2. J. Herrmann, G. Inden and G. Sauthoff : Acta Mater., 51 (2003) 2847. https://doi.org/10.1016/S1359-6454(03)00089-2
  3. J. Herrmann, G. Inden and G. Sauthoff : Acta Mater., 51 (2003) 3233. https://doi.org/10.1016/S1359-6454(03)00144-7
  4. J. Herrmann, G. Inden and G. Sauthoff : Steel Res. Int., 75 (2004) 339. https://doi.org/10.1002/srin.200405964
  5. J. Herrmann, G. Inden and G. Sauthoff : Steel Res. Int., 75 (2004) 343. https://doi.org/10.1002/srin.200405965
  6. D. Risanti, J. Deges, L. Falat, S. Kobayashi, J. Konrad, M. Palm, B. Poter, A. Schneider, C. Stallybrass and F. Stein : Intermetallics, 13 (2005) 1337. https://doi.org/10.1016/j.intermet.2005.02.007
  7. R. Rana, C. Liu and R. K. Ray : Scripta Mater., 68 (2013) 354. https://doi.org/10.1016/j.scriptamat.2012.10.004
  8. W. K. Choo, J. H. Kim and J. C. Yoon : Acta Mater., 45 (1997) 4877. https://doi.org/10.1016/S1359-6454(97)00201-2
  9. U. Brux, G. Frommeyer, O. Garssel, L. W. Meyer and A. Weise : Steel Res. 73 (2002) 294. https://doi.org/10.1002/srin.200200211
  10. G. Frommeyer, U. Brux and P. Neumann : ISIJ Int., 43 (2003) 438. https://doi.org/10.2355/isijinternational.43.438
  11. G. Frommeyer and U. Burx : Steel Res. Int., 77 (2006) 627. https://doi.org/10.1002/srin.200606440
  12. J. D. Yoo and K.-T. Park: Mater. Sci. Eng., A496 (2008) 417.
  13. K.-T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi and C. S. Lee: Mater. Sci. Eng., A527 (2010) 3651.
  14. K. Choi, C.-H. Seo, H. Lee, S. K. Kim, J.-H. Kwak, K. G. Chin, K.-T. Park and N. J. Kim : Scripta Mater., 63 (2010) 1028. https://doi.org/10.1016/j.scriptamat.2010.07.036
  15. I. Gutierrez-Urrutia and D. Raabe : Scripta Mater., 68 (2013) 343. https://doi.org/10.1016/j.scriptamat.2012.08.038
  16. R. G. Baligidad and A. Radhakrishna : Mater. Sci. Eng., A308 (2001) 136.
  17. S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, J.-H. Kwak and K.-G. Chin : Kor. J. Met. Mater., 48 (2010) 377. https://doi.org/10.3365/KJMM.2010.48.05.377
  18. S. Y. Han, S. Y. Shin, H.-J. Lee, B.-J. Lee, S. Lee, N. J. Kim and J.-H. Kwak : Metall. Mater. Trans., 43A (2012) 843.
  19. S. W. Hwang, J. H. Ji E. G. Lee and K.-T. Park : Mater. Sci. Eng., A528 (2011) 5196.
  20. C.-H. Seo, K. H. Kwon, K. Choi, K.-H. Kim, J. H. Kwak, S. Lee and N. J. Kim : Scripta Mater., 66 (2012) 519. https://doi.org/10.1016/j.scriptamat.2011.12.026
  21. Y.-U. Heo, Y.-Y. Song, S.-J. Park, H. K. D. H. Bhadeshia and D.-W. Suh : Metall. Mater. Trans., 43A (2012) 1731.
  22. S.-J. Park, B. Hwang, K. H. Lee, T.-H. Lee, D.-W. Suh and H. N. Han : Scripta Mater., 68 (2013) 365. https://doi.org/10.1016/j.scriptamat.2012.09.030
  23. B. C. Cullity : Elements of X-Ray Diffraction, Addison-Wesley, Reading (1978) 411.
  24. H. K. D. H. Bhadeshia and R. W. K. Honeycombe : Steels, 3rd ed., Elsevier (2006) 237.
  25. A. Broska, J. Wolff, M. Franz and T. Hehenkamp: Intermetallics, 7 (1999) 259. https://doi.org/10.1016/S0966-9795(98)00098-3
  26. R. Kerl, J. Wolff and T. Hehenkamp : Intermetallics, 7 (1999) 301. https://doi.org/10.1016/S0966-9795(98)00118-6

Cited by

  1. Enhanced strength-ductility relationship in a medium Mn high Al-alloyed multicomponent steel through thermomechanical processing vol.703, 2017, https://doi.org/10.1016/j.msea.2017.07.045
  2. Effect of Second Phase on the Deformation and Fracture Behavior of Multiphase Low-Density Steels vol.66, pp.9, 2014, https://doi.org/10.1007/s11837-014-1060-6
  3. Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents vol.29, pp.4, 2016, https://doi.org/10.12656/jksht.2016.29.4.176
  4. 전극 형상에 따른 저비중 경량강판의 저항 점 용접 특성 vol.35, pp.2, 2013, https://doi.org/10.5781/jwj.2017.35.2.8