• Title/Summary/Keyword: Audio Power Amplifier

Search Result 32, Processing Time 0.03 seconds

Development of Power Supply for Voltage-Adaptable Converter to Drive Linear Amplifiers with Variable Loads (가변부하를 갖는 선형 증폭기를 구동하기 위한 전압적응 변환기용 전력공급기 개발)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.251-257
    • /
    • 2014
  • An actuator system is a type of motor designed to control a mechanism operated by a source of energy, in the form of an electric current by converting energy into some kind of motion. As audio actuators, transforming electric voltage signal into audio signal, speakers and amplifiers are commonly used. In applications of industry, high output power systems are required. For these systems to generate high-quality output, it is essential to control output impedance of audio systems. We have developed an adaptable power supply for driving active amplifier systems with variable loads. Depending on the changing values of resistance of the speaker which produces audible sound by transforming electric voltage signal, the power supply source of the active amplifier can generate the maximum power delivered to the speaker by an adaptable change of loads. The amplifier is well protected from the abrupt increment of peak current and an excess of current flow.

A New High Efficiency and Low Pronto On-Board DC/DC Converter for Digital Car Audio Amplifier

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.601-605
    • /
    • 2004
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifier is proposed. The proposed converter shows the continuous input current, no DC excitation current of the transformer, the minimized electro-magnetic interference (EMI), no output inductor, and the low voltage stress of the secondary rectifier diodes. The 60W industrial sample of the proposed converter is implemented for digital car audio amplifier and the measured efficiency is $88.3\%$ at nominal input voltage.

  • PDF

Implementaion of An Audio-Glass Amplifier by Controlling the Current of PWM Inverter (PWM 인버터 전류제어에 의한 오디오급 엠프 구현)

  • Lee, Eul-Jae;Kwon, Byong-Heon;Lee, Ha-Cheol;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2704-2707
    • /
    • 1999
  • This paper presents a simple high power audio class amplifier which is controlled by a new current control switching method. Although this class D amplifier has an only one current control loop with the proposed switching method, a good performance can be obtained. And a novel switching strategy for driving stereo signal amplifier circuit with three phase full bridge is discussed also. With the simulation and experimental results, usefulness of the proposed amplifier is confirmed.

  • PDF

Design of High-efficiency Power Amplifier System for High-directional Speaker (고지향성 스피커를 위한 새로운 전력 증폭기 설계)

  • Kim, Jin-Young;Kim, In-Dong;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1215-1221
    • /
    • 2017
  • Parametric array transducers are used for highly directional speaker in an air environments. Piezoelectric micromachined ultrasonic transducers for parametric array transducers need DC-biased voltage driving signals in order to get high-directional quality-sound features. The existing power amplifier such as class A amplifiers has low efficiency and require large volume heatsinks. To overcome the above-mentioned disadvantages of the conventional amplifier, this paper proposes a new power amplifier system. The proposed power amplifier system ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier. Furthermore, the proposed power amplifier system gets high efficiency because it contains the DC-DC converter-type power supply which can perform energy recovery and envelope tracking function. Also the paper suggests the detailed circuit topology. Its characteristics are verified by the detailed experimental results.

A New High Efficiency and Low Profile On-Board DC/DC Converter for Digital Car Audio Amplifiers

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.83-93
    • /
    • 2006
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifiers is proposed. The proposed converter shows low conduction loss due to the low voltage stress of the secondary diodes, a lack of DC magnetizing current for the transformer, and a lack of stored energy in the transformer. Moreover, since the primary MOSFETs are turned-on under zero-voltage-switching (ZVS) conditions and the secondary diodes are turned-off under zero-current-switching (ZCS) conditions, the proposed converter has minimized switching losses. In addition, the input filter can be minimized due to a continuous input current, and an output inductor is absent in the proposed converter. Therefore, the proposed converter has the desired features, high efficiency and low profile, for a viable power supply for digital car audio amplifiers. A 60W industrial sample of the proposed converter has been implemented for digital car audio amplifiers with a measured efficiency of $88.3\%$ at nominal input voltage.

A Class-D Amplifier for a Digital Hearing Aid with 0.015% Total Harmonic Distortion Plus Noise

  • Lee, Dongjun;Noh, Jinho;Lee, Jisoo;Choi, Yongjae;Yoo, Changsik
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.819-826
    • /
    • 2013
  • A class-D audio amplifier for a digital hearing aid is described. The class-D amplifier operates with a pulse-code modulated (PCM) digital input and consists of an interpolation filter, a digital sigma-delta modulator (SDM), and an analog SDM, along with an H-bridge power switch. The noise of the power switch is suppressed by feeding it back to the input of the analog SDM. The interpolation filter removes the unwanted image tones of the PCM input, improving the linearity and power efficiency. The class-D amplifier is implemented in a 0.13-${\mu}m$ CMOS process. The maximum output power delivered to the receiver (speaker) is 1.19 mW. The measured total harmonic distortion plus noise is 0.015%, and the dynamic range is 86.0 dB. The class-D amplifier consumes 304 ${\mu}W$ from a 1.2-V power supply.

A High-Efficiency Driver Design for Mobile Digital Audio Speakers (모바일용 디지털 오디오 스피커를 위한 고효율 드라이버 설계)

  • Kim, Yong-Serk;Rim, Min-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • In this paper, we designed Interpolation FIR(Finite Impulse Response) filter and 1-bit SDM(Sigma- Delta Modulator) for small digital audio speaker, which has low power consumption and high output characteristics. In order to achieve high linearity and low distortion performance of the systems, we adopt Type I Chevychev FIR filter which has equiripple characteristics in the pass band and proposed high efficient FIR filter structure. SDM is the most efficient modulation technique among the noise shaping techniques. In this paper, we implemented SDM using CIFB(Cascade of Intergrators, Feed-Back) which is generally used in DAC of small digital audio speakers. The proposed SDM structure can achieve high SNR, high-efficiency characteristics and low power consumption in mobile devices. Also considering manufacture of SoC(System on Chip), we performed simulation with Matlab and Verilog HDL to obtain optimal number of operational bits and verified a good experimental results.

Compensation of the Non-linearity of the Audio Power Amplifier Converged with Digital Signal Processing Technic (디지털 신호 처리 기술을 융합한 음향 전력 증폭기의 비선형 보상)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.3
    • /
    • pp.77-85
    • /
    • 2016
  • We propose a digital signal processing technic that can compensate the non-linearity inherent in audio amplifiers, and present the result of the simulation. The inherent non-linearity of the audio power amplifier arising from analog devices is compensated via a digital signal processing technic consisting of indirect learning architecture and an adaptive filter. The simulation results show that the compensator can be realized using a third-order polynomial and compensates odd-order non-linearity efficiently. The even-oder non-linearity is mainly due to the dc offset at the output, which is difficult to eliminate with the proposed method. Care must be taken in designing the bias circuit to avoid the DC offset at the output. The proposed technic has significance in that digital signal processing technic can compensate for the impairment that is an inherent characteristic of an analog system.

Class D Audio Power Amplifier with High Efficiency and Wide Bandwidth by Dual Negative Feedback (이중 부궤환에 의한 고효율 광대역 D급 오디오 증폭기)

  • Jeong, Jae-Hoon;Seong, Hwan-Ho;Yi, Jeong-Han;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.141-143
    • /
    • 1994
  • The pulse width modulated class D power amplifier has the highest efficiency among various class amplifiers but the performances, such as bandwidth, distortion and stability are inferior to the conventional ones. In this paper, a new class D amplifier design is Presented employing dual feedback loops namely current and voltage feedback. The new design provides wide full-power bandwidth and stability at any load with high efficiency.

  • PDF

Design of class D Amplifier circuits for PA system (PA 시스템을 이용한 D급 증폭회로의 설계)

  • Lee, Jong-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.400-403
    • /
    • 2007
  • This research describes how the class D amplifiers with power efficiency are designed and implemented for the PA audio systems. The configuration that makes use of the class D amplifier properties depends strongly on their applications. Thus in this paper the characteristics of the 2-level and 3-level PWM are analysed and the circuit implementation for them is presented. Using the proposed methods, they are designed and simulated for the further investigation. Test(Simulation) results present the improved performance that shows the satisfactory operations in controlling the PWM to the input signals.

  • PDF