• Title/Summary/Keyword: AuNP

Search Result 49, Processing Time 0.021 seconds

Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

  • El-Rab, Sanaa M.F. Gad;Halawani, Eman M.;Hassan, Aziza M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1563-1572
    • /
    • 2018
  • Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum ${\beta}$-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBL-producing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and $4{\mu}g/ml$, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of $0.1{\mu}g/ml$ medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.

Gold Nanoparticles Inhibit AGEs Induced Migration and Invasion in Bovine Retinal Endothelial Cells (소망막내피세포에서 금 나노입자의 최종당화산물에 의한 세포 이동 및 침윤성 억제 효과)

  • Chae, Soo-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • This study aimed the role of gold nanoparticles (AuNP) in advanced glycation end-products (AGEs) induced migration and invasion in bovine retinal endothelial cells (BRECs). BRECs were isolated from the retina. Cell viability was confirmed by the MTT assay. In vitro wound migration assay was performed to investigate the migration of BRECs. In vitro tube formation was measured by on-gel system. Apoptosis induced by AuNP was confirmed by caspase-3 assay. AGE-bovine serum albumin (BSA) demonstrated increase of cell migration and proliferation in BRECs. In addition, AuNP regardless of the existence of AGE-BSA suppressed proliferation, migration, and angiogenesis. AuNP suppressed AGE-BSA induced migration and invasion, and induced apoptosis through caspase-3. As a results, AuNP have a potential anti-angiogenic effect for AGE-induced angiogenesis in vitro and offer possibility for the treatment of diabetic retinopathy.

Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe

  • Park, Chan-Gyu;Kim, Ju-Young;Lee, Eun-Byoul;Choi, Han-Kyu;Park, Won-Hwa;Kim, Jin-Wook;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1748-1752
    • /
    • 2012
  • We carried out the tip-enhanced Raman scattering (TERS) with a tip that is functionalized with a Aunanoparticle (AuNP, with a diameter of 250 nm). The AuNP tip is fabricated by a direct mechanical pickup of a AuNP from a flat substrate, and the TERS signal from the AuNP tip - organic monolayer - Au thin film (thickness of 10 nm) is recorded. We find that such a AuNP-tip interacting with a thin film routinely yields signal enhancement larger than ${\sim}10^4$, which is sufficient not only for local (with detection area of ~200 $nm^2$) Raman spectroscopy, but also the nanometric imaging of organic monolayers within a reasonable acquisition time (~20 minutes/image).

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers

  • Kim, Jung-Kil;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Polystyrene/gold nanoparticle (PS/AuNP) composite fibers were fabricated using an electrospinning technique. Transmission electron microscopy (TEM) showed that the diameters of the naphthalenethiol-capped gold nanoparticles (prior to incorporation into the PS fibers) ranged from 2 to 5 nm. UV-vis spectroscopy revealed the surface plasmon peaks of the gold nanoparticles centered at approximately 512 nm, indicating that nano-sized Au particles are well-dispersed in solution. This was consistent with the TEM observations. The electrospun nanofibers of PS/AuNP composites were approximately 60-3,000 nm in diameter. The surface morphology of the PS/AuNP composite and the dispersability of the Au nanoparticles inside of PS after electrospinning process were investigated by SEM and TEM. The thermal behavior of the pure PS and PS/AuNP nanocomposites and fibers were examined by DSC.

Characterization of Ligands-Conjugated AuNPs by Using ToF-SIMS Imaging Technique

  • Shon, Hyun Kyong;Xaba, Morena Sam;Gulumian, Mary;Song, Nam Woong;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.278-278
    • /
    • 2013
  • 최근 나노 입자의 안전성에 대한 연구가 활발하게 이루어 지고 있다. 대부분의 연구는 세포독성과 쥐에 흡입시켜 각 장기에 침착 정도를 측정하는 연구에 집중되어 있고, 나노입자의 리간드 특성에 대한 연구는 활발이 진행되고 있지 않다. 따라서 같은 나노입자를 이용한 연구결과가 다르게 나타나는 것을 종종 확인 할 수 있어서, 나노입자 특성평가의 중요성이 커지고 있다 [1,2]. 본 연구에서는 용매에 리간드가 존재하는 PEG-conjugated AuNPs과 원심분리로 용액내의 free-ligands가 제거된 PEG-conjugated AuNPs에 대하여 ToF-SIMS 이미지를 얻었고, PEG와 AuNPs 이미지의 statistical correlation으로부터 AuNPs의 표면에 존재하는 리간드들의 stability를 평가할 수 있는 방법을 개발하였다. 또한, citrated-conjugated AuNPs을 PEG 리간드로 표면을 치완시키고, phagolysosomal simulant Fulid(PSF) 용액에 incubation 과정 동안의 PEG 리간드가 표면에서 제거되어 용액에 존재함을 확인하였다. ToF-SIMS의 이미지와 statistical correlation을 이용하면 나노입자의 표면에 존재하는 다양한 리간드들의 안정성을 평가할 수 있고, 이를 통한 나노입자의 안전성에 대한 연구에 기여 할 수 있을 것으로 기대된다.

  • PDF

Preparation of Langmuir-Blodgett Film of Silica Coated Gold Nanoparticles (실리카 코팅 AuNPs의 Langmuir-Blodgett 박막 제조)

  • Park, Minsung;Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Hyun, Jinho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.144-148
    • /
    • 2010
  • It reports the surface modification of gold nanoparticles (AuNPs) by the synthesis of thin silica layer and the fabrication of AuNPs monolayer on the glass surface. AuNPs of 10 nm in diameter were prepared in aqueous solution. A silica layer was synthesized at the different concentration of tetraethlyorthosilicate for the control of silica layer thickness. Langmuir-Blodgett (LB) film was fabricated by dispersing AuNPs on the aqueous solution and raising a surface pressure up to a solid phase. The change of AuNPs' size was observed by the change of UV/Visible spectra. Atomic force microscopic images confirmed the reliable fabrication of AuNPs LB films.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Density Functional Theory Studies of Oxygen Affinity of Small Au Nanoparticles

  • Ha, Hyunwoo;Shin, Kihyun;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.229-235
    • /
    • 2017
  • Through density functional theory calculations, to provide insight into the origins of the catalytic activity of Au nanoparticles (NPs) toward oxidation reactions, we have scrutinized the oxygen adsorption chemistry of 9 types of small unsupported Au NPs of around 1 nm in size (Au13, Au19, Au20, Au25, Au38, and Au55) looking at several factors (size, shape, and coordination number). We found that these NPs, except for the icosahedral Au13, do not strongly bind to $O_2$ molecules. Energetically most feasible $O_2$ adsorption that potentially provides high CO oxidation activity is observed in the icosahedral Au13, our smallest Au NP. In spite of the chemical inertness of bulk Au, the structural fluxionality of such very small Au NP enables strong $O_2$ adsorption. Our results can support recent experimental findings that the exceptional catalytic activity of Au NPs comes from very small Au species consisting of around 10 atoms each.

Bio-functionalized Gold Nanoparticles for Surface-Plasmon- Absorption-Based Protein Detection

  • Kim, Wan-Joong;Choi, Soo-Hee;Rho, Young-S.;Yoo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4171-4175
    • /
    • 2011
  • Bio-functionalized gold nanoparticles (AuNPs), which bio-specifically interact with biotin-(strept)avidin, were investigated in this study. AuNPs were functionalized with a synthetically-provided biotin-linked thiol (BLT), which was synthesized by amidation of the active ester of biotin with 2-mercaptoethylamine. The BLT-attached AuNP was bio-specific for streptavidin, making it potentially useful for biosensor applications. To test the bio-specific interactions, the colors, absorption spectra and TEM images were investigated for proteins such as streptavidin, cytochrome C, myoglobin and hemoglobin. The colors and absorption spectra changed when streptavidin was added to the BLT-attached AuNP solution. However, the color and spectra did not change when the other proteins were added to the same solution. These results show that the AuNPs provided a colloidal solution with excellent stability and highly selective absorption characteristics for streptavidin as a target molecule. Proteins were also screened in order to identify a general strategy for the use of optical biosensing proteins based on AuNPs. In addition, TEM images confirmed that streptavidin led the BLT-attached AuNPs to aggregate or precipitate.