• Title/Summary/Keyword: Au to Au bonding

Search Result 120, Processing Time 0.022 seconds

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

A study on the adhesion of Ag film deposited on Alloy42 substrate (Alloy42 기판 위에 증착된 Ag막의 밀착력에 관한 연구)

  • 이철룡;천희곤;조동율;이건환;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.496-502
    • /
    • 1999
  • Electroplating of Ag and Au on the functional area of lead frames are required for good bonding ability in IC packaging. As the patterns of the lead frame become finer, development of new deposition technology has been required for solving problems associated with process control for uniform thickness on selected area. Sputtering was employed to investigate the adhesion between substrate Alloy42 and Ag film as a new candidate process alternative to conventional electroplating. Coating thickness of Ag film was controlled to 3.5$\mu\textrm{m}$ at room temperature as a reference. The deposition of film was optimized to ensure the adhesion by process parameters of substrate heating temperature at $100~300^{\circ}C$, sputter etching time at -300V for 10~30min, bias voltage of -100~-500V, and existence of Cr interlayer film of $500\AA$. The critical $load L_{c}$ /, defined as the minimum load at which initial damage occurs, was the highest up to 29N at bias voltage of -500V by scratch test. AFM surface image and AES depth profile were investigated to analyze the interface. The effect of bias voltage in sputtering was to improve the surface roughness and remove the oxide on Alloy42.

  • PDF

Microfluidic LOC System (Microfluidic LOC 시스템)

  • Kim, Hyun-Ki;Gu, Hong-Mo;Lee, Yang-Du;Lee, Sang-Yeol;Yoon, Young-Soo;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, we used only PR as etching mask, while it used usually Cr/AU as etching mask, and in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. we designed microchannel size width max 10um, min 5um depth max 10um, reservoir size max 100um, min 2mm. Fabrication of microfluidic devices in glass substrate by glass wet etching methods and glass to glass fusion bonding. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive($4k{\Omega}{\cdot}cm$) wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571\Omega$ to $393\Omega$.

  • PDF

A STUDY ON THE BONDING BEHAVIOR OF PALLADIUM-BASED ALLOYS FOR CERAMO-MENTAL RESTORATION (도재 소부용 팔라디움계 합금의 도재 결합양상에 관한 연구)

  • Chang, Hoon;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.143-179
    • /
    • 1989
  • To observe the bonding behavior of palladium-based alloys to porcelain; 1. Pd-Co binary alloy with the higher cobalt content, 2. Pd-Co binary alloy with the lower cobalt content, 3. Pd-Ag-Sn ternary alloy, 4. Pd-Ag binary alloy, 5. Pd-Cu-Au ternary alloy and 6. Pd-Cu binary alloy were made as 6 groups of experimental alloys. Each group of alloy was divided into 4 sub-groups such as one sub-group that was not degassed and three sub-groups that degassed for 5 minutes, 10 minutes and 15 minutes. On each specimen, weight changes after degassing, morphological changes of oxide layer by changing the degassing time, compositional changes at metal-ceramic interface and bond strength of metal-ceramic measured with planar shear test were observed and compared. The results of the present study allow the following conclusions to be drawn: 1. The alloy showing the greatest bond strength was Pd-Cu alloy without gold and bond strength was decreased by alloying gold to them. 2. Although Pd-Co alloy showed the most prominent oxidation behavior, bond strength of them to porcelain was not greatly high by the formation of porosities at metal-ceramic interfaces. 3. Likewise tin, cobalt formed the peaks on line profiles at metal-ceramic interface, however copper did not exhibit such peaks on line profiles. 4. Mainly, oxide layer on Pd-Co alloy was composed with cobalt, and for Pd-Co alloy with higher cobalt content the rise of bond strength was not significant by increased degassing time. 5. On Pd-Ag alloy not containing tin, during degassing for 15 minutes silver content was increased at metal-ceramic interface. 6. As an oxidized element, tin formed the oxide layers that widen their area by increasing the degassing time, while cobalt and copper showed the morphological changes of particle or crystal on oxide layer.

  • PDF

Flip Chip Solder Joint Reliability of Sn-3.5Ag Solder Using Ultrasonic Bonding - Study of the interface between Si-wafer and Sn-3.5Ag solder (초음파를 이용한 Sn-3.5Ag 플립칩 접합부의 신뢰성 평가 - Si웨이퍼와 Sn-3.5Ag 솔더의 접합 계면 특성 연구)

  • Kim Jung-Mo;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.23-29
    • /
    • 2006
  • Ultrasonic soldering of Si-wafer to FR-4 PCB at ambient temperature was investigated. The UBM of Si-substrate was Cu/ Ni/ Al from top to bottom with thickness of $0.4{\mu}m,\;0.4{\mu}m$, and $0.3{\mu}m$ respectively. The pad on FR-4 PCB comprised of Au/ Ni/ Cu from top to bottom with thickness of $0.05{\mu}m,\;5{\mu}m$, and $18{\mu}m$ respectively. Sn-3.5wt%Ag foil rolled to $100{\mu}m$ was used for solder. The ultrasonic soldering time was varied from 0.5 s to 3.0 s and the ultrasonic power was 1,400 W. The experimental results show that a reliable bond by ultrasonic soldering at ambient temperature was obtained. The shear strength increased with soldering time up to a maximum of 65 N at 2.5 s. The strength decreased to 34 N at 3.0 s because cracks were generated along the intermetallic compound between Si-wafer and Sn-3.5wt%Ag solder. The Intermetallic compound produced by ultrasonic soldering between the Si-wafer and the solder was $(Cu,Ni)_{6}Sn_{5}$.

  • PDF

Optimization of wiring process in semiconductor with 6sigma & QFD (6시그마와 QFD를 활용한 반도체용 wire공법 최적화 연구)

  • Kim, Chang-Hee;Kim, Kwang-Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.3
    • /
    • pp.17-25
    • /
    • 2012
  • Wire bonding process in making semiconductor needs the most precise control and Critical To Quality(CTQ). Thus, it is regarded to be the most essential step in packaging process. In this process, pure gold wire is used to connect the chip and PCB(substrate or lead frame). However, the price of gold has been skyrocketing continuously for a long period of time and is expected to further increase in the near future. This phenomenon situates us in an unfavorable condition amidst the competitive environment. To avoid this situation, many semiconductor material making companies developed new types of wires: Au.Ag wire is one material followed by many others. This study is aimed to optimize the parameter in wire bonding with the use of 6sigma and QFD(Quality Function Deployment). 6sigma process is a good means to not only solve the problem, but to increase productivity. In order to find the key factor, we focused on VOB(Voice of Business) and VOC(Voice of Customer). The main factors from VOB, VOC are called CTQ. However, there were times when these main factors were far from offering us the correct answer, thus making the situation more difficult to handle. This study shows that QFD aids in deciding which of the accurate factors to undertake. Normally QFD is used in designing and developing products. 6sigma process is held more effective when it used with QFD.

  • PDF

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF