• Title/Summary/Keyword: Au thin film

Search Result 302, Processing Time 0.025 seconds

Microwave plasma emission from tunnel-injected nonequilibrium high-Tc superconductors

  • Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.9-14
    • /
    • 2000
  • We report on the novel nonequilibrium nlicrowave emission from quasiparticle-injected high-Tc superconductors. The phenomena have been observed for the current-injected YBCO/I/Au or BSCCO/I/Au thin-film tunnel junctions and BSCCO single-crystal intrinsic Josephson mesa junction samples. For the thin-film tunnel junctions, the emitted radiation appears as broadband. For the intrinsic BSCCO mesa samples, the radiation appears as three different modes of emissions depending on the bias point in the hysteretic current-voltage characteristics; Josephson-emission, nonequilibrium broad emission and sharp coherent microwave emission. The results were interpreted by the Josephson plasma excitation model due to quasiparticle injection.

  • PDF

Resistance development in Au/YBCO thin film meander lines during quench (금/YBCO 박막에서의 quench 저항 발생)

  • Kim, Hye-Rim;Choi, Hyo-Sang;Lim, Hae-Ryong;Kim, In-Seon;Hyun, Ok-Bae
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.252-256
    • /
    • 2000
  • We investigated resistance development in Au/YBCO thin film meander lines during quench. The meander lines were fabricated by coating YBCO films insitu with a gold layer and patterning them by photolithography. The center stripe quenched fastest even though the flux flow resistance that appeared upon the current passing the critical current was uniform. Quench started at an area of the center stripe and propagate both through the gold layer and the sapphire substrate. Quench propagation speed was uniform and 60 cm/s at 30 V$_{rms}$.

  • PDF

Recovery time after quench of Au/YBCO thin film for fault accident detection (단락 사고 검출용 고온초전도체의 초전도성 회복 시간 변화 측정)

  • Yim, Seong-Woo;Kim, Hye-Rim;Hyun, Ok-Bae;Sung, Tae-Hyun;Sim, Jung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.246-247
    • /
    • 2007
  • 최근 KEPRI-LSIS가 공동 개발한 하이브리드형 초전도 한류기 동작 시, 사고 검출을 담당하는 초전도체의 최적 설계에 적용하기 위하여 Au/YBCO 박막의 ��치 회복 특성을 조사하였다. $600\;V_{rms}$, 3 ms의 사고가 초전도 박막에 인가되었을 때, ��치가 종료된 이후 초전도성을 회복하기 위해 142 ms의 시간이 소요되었다. 또한 인가 시간이 증가함에 따라 소요 시간도 비례하여 증가하여 4 ms 동안 인가되었을 때, ��치 회복 시간은 272 ms로 측정되었다.

  • PDF

Fabrication of Pentacene-Based Organic Thin Film Transistor (펜타센을 활성층으로 사용하는 유기 TFT 제작)

  • 정민경;김도현;구본원;송정근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.44-47
    • /
    • 2000
  • 본 연구는 α-Si:H TFT(Amorphous Silicon Thin Film Transistor)를 대체 할 펜타센을 활성층으로 사용하는 박막 트랜지스터를 제작에 관한 것이다. 유기 박막 트랜지스터는 유기발광소자와 함께 유연한 디스플레이에 응용된다. 펜타센 박막 트랜지스터의 제작은 채널 길이 25㎛, 70㎛, 소스, 드레인, 게이트 전극으로 Au을 lift off 공정으로 제작하였으며, 펜타센은 OMBD(Organic Molecular Beam Deposition)로 기판온도를 80℃로 유지하여 증착하였다. 제작된 소자로부터 트랜지스터 전류-전압 특성곡선을 측정하였고, 게이트에 의한 채널의 전도도가 조절됨을 확인하였다. 그리고, 전달특성곡선으로부터 문턱전압과 전계효과 이동도를 추출하였다.

  • PDF

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Influence of Au Interlayer Thickness on the Opto-Electrical Properties of ZnO Thin Films (Au 층간박막 두께에 따른 ZnO 박막의 전기광학적 특성 변화)

  • Park, Yun-Je;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Gong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.104-108
    • /
    • 2020
  • ZnO single layer films (100 nm thick) and Au intermediated ZnO films (ZnO/Au/ZnO; ZAZ) were deposited on the glass substrate by RF and DC magnetron sputtering at room temperature and then the influence of the Au interlayer on the electrical and optical properties of the films were investigated. ZnO thin films show the visible transmittance of 90.3 % and sheet resistance of 63.2×108 Ω/□. In ZAZ films, as Au interlayer thickness increased from 6 to 10 nm, the sheet resistance decreased from 58.3×108 to 48.6 Ω/□, and the visible transmittance decreased from 84.2 to 73.9 %. From the observed results, it can be concluded that the intermediate Au thin film enhances the opto-electrical performance of ZnO films without intentional substrate heating.

Temperature and Atmosphere Dependence of the Electrical Conduction of the Vacuum Evaporated Thin Metal Films on Glass Substrate (진공증착된 금속박막의 전기전도성에 대한 온도와 분위기 의존성)

  • 김명균;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.437-442
    • /
    • 1991
  • Temperature and atmosphere dependence of electrical conduction of the metal Cu, Ag, Au films, vaccum evaporated on glass, was investigated. The structural changes of the metal films were examined by SEM and high temperature XRD. The electrical resistance slightly increased with initial temperature increase up to the inflection point and decreased to minimum value, after this rapidly increased with further temperature increased below minimum. These phenomena were caused by the thermally induced film failure as a result of the mass transport. The temperature for the film failure increased in the order of O2, Air, Vacuum, N2, Ar in Cu, Ag films and Air, Vacuum, N2, Ar in Au film. The increase of resistance at the lower temperature range was attributed to the lattice distortion by disordered crystal structure, while the decreasing resistance was attributed to the removal of structural defects and film densification.

  • PDF

Electrical Properties of Metal-Ferroelectric-Semiconductor Structures Based on Ferroelectric P(VDF-TrFE) Copolymer Film

  • Lee, Gwang-Geun;Park, Hyeong-Jin;Han, Hui-Seong;Park, Byung-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.85-86
    • /
    • 2007
  • A poly(vinylidene fluoride-trifluoroethyene) (P(VDF-TrFE)) copolymer thin film having ${\beta}$ phase was prepared by sol-gel method. The electrical properties of the film were studied to evaluate the possibility for appling to a ferroelectric random access memory. In order to characterize its electrical properties, we produced a MFS (metal-ferroelectric-semiconductor) structure by evaporation of Au electrodes. The C-V (capacitance-voltage) measurement revealed that the Au/P(VDF-TrFE)/Si structure with a 4 wt% film had a memory window width of about 0.5V for a bias voltage sweep of 1V.

  • PDF