• Title/Summary/Keyword: Attenuation relationship

Search Result 120, Processing Time 0.032 seconds

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF

The Qualitative Evaluation of Seismic Characteristics using the KMA Seismological Bulletin (1978-2001) (기상청 지진관측보고(1978-2001)를 이용한 지진 특성의 정성적 평가)

  • 박동희;연관희;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.12-19
    • /
    • 2002
  • A high frequency level of Fourier amplitude relates with stress drop and seismic moment. When we can not use this relation owing to absence of digital earthquake data, stress drop and seismic moment can be determined from Peak Ground Velocity(PGV) and felt area. We have qualitatively evaluated the seismic characteristics using PGV, and Magnitude from the well determined felt area in seismological records of Korea(1978~2001) by Korea Meteorological Administration(KMA). Observed relations between felt area and magnitude in the Korean Peninsula are explained by attenuation(Q), and stress drops comparing with the previous researches on stress parameter. This results are preliminary work for the study of stress parameter using the relationship of high frequency lavel, PGV, and felt area.

  • PDF

A Study on Evaluation of Thermal Shock Damage of Metal Matrix Composite using Ultrasonics (초음파를 이용한 금속복합재료의 열충격 손상 평가 연구)

  • 강문필;이준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.31-37
    • /
    • 2000
  • Metal matrix composites(MMCs) are rapidly becoming one of the strongest candidates for structural materials for many high temperature application. Among the high temperature environment, thermal shock is known to cause significant degradation in most MMC system. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonic surface and SH-waves. For this study, Sic fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 25~$400^{\circ}C$ up to 1000 cycles. Three point bend test was conducted to investigate the effect of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the change of ultrasonic velocity and attenuation were discussed by considering SEM observation of fracture surface.

  • PDF

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Seismic Reliability Evaluation of Electric Power Transmission Systems in Low and Moderate Seismicity Regions (중약진 지역에서의 전력송전시스템의 지진재해 신뢰성 평가)

  • 고현무;김영호;박원석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.155-162
    • /
    • 2002
  • A technique for the seismic reliability evaluation of electric power transmission systems(EPTS) adapted to ground motion characteristics of Korea has been developed to evaluate reliability indices corresponding to the whole system and to each node within. A network model with nodes and links for EPTS has been established, and a seismic substation-fragility curve obtained from seismic fragilities of power system facilities has been derived. A point source model, the doubly truncated Gutenberg-Richter relationship, and earthquake intensity attenuation formula have been applied to simulate seismic events. Using Monte-Carlo simulation method, the seismic reliability of EPTS is evaluated and, it appeared that seismic effect on EPTS in low and moderate seismicity regions has to be considered.

  • PDF

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

Analysis in Measurements of Gastric Emptying Time (위 배출시간 측정의 분석방범에 대한 연구)

  • Lee, Choon-Ho;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.35-38
    • /
    • 1997
  • Scintigraphic measurement of gastric emptying time has been reported to be influenced by the variation in depth of radionuclide within the stomach. This study was designed to clarify whether a part of the variability in gastric emptying could be ascribed to a relationship between anterior image, the total anteroposterior Image and the tissue attenuation correction(geometric mean). A dual-head scintillation camera(ADAC, USA) was used to investigate effect of such changes. We were performed 16 normal subject gastric emptying studies with $^{99m}TC$ labelled scramble egg, milk and solid meal(610 Kcal, 300 g) The results are as follows; On anterior Image, $T_{1/2}$ emptying time was delayed by 5 min, 6.5%(range $3{\sim}18\;min,\;5{\sim}31.4%$) compared with the geometric mean. But there was no different gastric emptying time between the total anteroposterior image and geometric mean. Therefore, if will be useful to use the method of geometric mean or the total anteroposterior image to evaluate the gastric emptying time accurately.

  • PDF

Fatigue Behavior of Glassy Polymers by Ultrasonic NDE (초음파탐상법에 의한 유리질 중합체의 피로거동 해석)

  • Lee, O.S.;Rho, E.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.56-64
    • /
    • 1990
  • It is well-known that the defects (existing in structures) and the material degradation(caused by the fatigue load) generally initiate the failure of structures. The NDE such as ultrasonic technique which can be used to detect the size and the orientation of defects has been utilized to estimate the life and stability of structures. However, only few experimental reports made by using the ultrasonic technique have been published for the case of fatigue estimation of materials and structures. The purpose of this study is, thus, to derive the relationship between ultrasonic attenuation and fatigue behavior of Polycarbonate and PMMA through ultrasonic characterization. It is also attempted to offer NDE experimental procedure which may be useful to predict fatigue life.

  • PDF

Influence of HAPS and GEO Satellite under SANDU Layering and Gas Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.93-100
    • /
    • 2021
  • Satellite communication for high altitude platform stations (HAPS) and geostationary orbit (GEO) systems suffers from sand and dust (SANDU) storms in desert and arid regions. The focus of this paper is to propose common relations between HAPS and GEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three-dimensional relationship for HAPS and GEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gas effects for different frequency, and propagation angle to provide systems' operations with a predicted vision of satellite parameters' values. Thus, the proposed system provides wide range of selecting applicable parameters, under different weather conditions, in order to achieve better SNR for satellite communication.