Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.617-629
/
2020
In order to overcome the limitations of the rule-based intrusion detection system due to changes in Internet computing environments, the emergence of new services, and creativity of attackers, network anomaly detection (NAD) using machine learning and deep learning technologies has received much attention. Most of these existing machine learning and deep learning technologies for NAD use supervised learning methods to learn a set of training data set labeled 'normal' and 'attack'. This paper presents the feasibility of the unsupervised learning AutoEncoder(AE) to NAD from data sets collecting of secured network traffic without labeled responses. To verify the performance of the proposed AE mode, we present the experimental results in terms of accuracy, precision, recall, f1-score, and ROC AUC value on the NSL-KDD training and test data sets. In particular, we model a reference AE through the deep analysis of diverse AEs varying hyper-parameters such as the number of layers as well as considering the regularization and denoising effects. The reference model shows the f1-scores 90.4% and 89% of binary classification on the KDDTest+ and KDDTest-21 test data sets based on the threshold of the 82-th percentile of the AE reconstruction error of the training data set.
IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.
Since 1990s, some events - detection of a dirty bomb in a Russian nation park in 1995, 9/11 terrorist attack to WTC in 2001, discovery of Al-Qaeda's experimentation to build a dirty bomb in 2003 etc - have showed that nuclear or radiological terrorism relating to radioactive materials (hereinafter "radioactive materials" is referred to as "nuclear material, nuclear spent fuel and radioactive source") is not incredible but serious and credible threat. Thus, to respond to the new threat, the international community has not only strengthened security and physical protection of radioactive materials but also established prevention of and response to illicit trafficking of radioactive materials. In this regard, our government has enacted or revised the national regulatory framework with a view to improving security of radioactive materials and joined the international convention or agreement to meet this international trend. For the purpose of prevention of nuclear/radiological terrorism, this paper reviews physical characteristics of nuclear material and existing detection instruments used for prevention of illicit trafficking. Finally, national detection regime against nuclear/radiological terrorism based on paths of the smuggled radioactive materials to terrorist's target building/area, national topography and road networks, and defence-in-depth concept is suggested in this paper. This study should contribute to protect people's health, safety and environment from nuclear/radiological terrorism.
Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
KIPS Transactions on Software and Data Engineering
/
v.10
no.7
/
pp.271-278
/
2021
As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.
User authentication based on ID and PW has been widely used. As the Internet has become a growing part of people' lives, input times of ID/PW have been increased for a variety of services. People have already learned enough to perform the authentication procedure and have entered ID/PW while ones are unconscious. This is referred to as the adaptive unconscious, a set of mental processes incoming information and producing judgements and behaviors without our conscious awareness and within a second. Most people have joined up for various websites with a small number of IDs/PWs, because they relied on their memory for managing IDs/PWs. Human memory decays with the passing of time and knowledges in human memory tend to interfere with each other. For that reason, there is the potential for people to enter an invalid ID/PW. Therefore, these characteristics above mentioned regarding of user authentication with ID/PW can lead to human vulnerabilities: people use a few PWs for various websites, manage IDs/PWs depending on their memory, and enter ID/PW unconsciously. Based on the vulnerability of human factors, a variety of information leakage attacks such as phishing and pharming attacks have been increasing exponentially. In the past, information leakage attacks exploited vulnerabilities of hardware, operating system, software and so on. However, most of current attacks tend to exploit the vulnerabilities of the human factors. These attacks based on the vulnerability of the human factor are called social-engineering attacks. Recently, malicious social-engineering technique such as phishing and pharming attacks is one of the biggest security problems. Phishing is an attack of attempting to obtain valuable information such as ID/PW and pharming is an attack intended to steal personal data by redirecting a website's traffic to a fraudulent copy of a legitimate website. Screens of fraudulent copies used for both phishing and pharming attacks are almost identical to those of legitimate websites, and even the pharming can include the deceptive URL address. Therefore, without the supports of prevention and detection techniques such as vaccines and reputation system, it is difficult for users to determine intuitively whether the site is the phishing and pharming sites or legitimate site. The previous researches in terms of phishing and pharming attacks have mainly studied on technical solutions. In this paper, we focus on human behaviour when users are confronted by phishing and pharming attacks without knowing them. We conducted an attack experiment in order to find out how many IDs/PWs are leaked from pharming and phishing attack. We firstly configured the experimental settings in the same condition of phishing and pharming attacks and build a phishing site for the experiment. We then recruited 64 voluntary participants and asked them to log in our experimental site. For each participant, we conducted a questionnaire survey with regard to the experiment. Through the attack experiment and survey, we observed whether their password are leaked out when logging in the experimental phishing site, and how many different passwords are leaked among the total number of passwords of each participant. Consequently, we found out that most participants unconsciously logged in the site and the ID/PW management dependent on human memory caused the leakage of multiple passwords. The user should actively utilize repudiation systems and the service provider with online site should support prevention techniques that the user can intuitively determined whether the site is phishing.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.9
no.2
/
pp.196-204
/
2016
World Health Organization reported that heart-related diseases such as coronary artery stenoses show the highest occurrence rate which may cause heart attack. Using Computed Tomography angiography images will allow radiologists to detect and have intervention by creating 3D roadmapping of the vessels. However, it is often complex and difficult do reconstruct 3D vessel which causes very large amount of time and previous researches were studied to segment vessels more accurate automatically. Therefore, in this paper, Region Competition, Geodesic Active Contour (GAC), Multi-atlas based segmentation and Active Shape Model algorithms were applied to segment aortic root from CTA images and the results were analyzed by using mean Hausdorff distance, volume to volume measure, computational time, user-interaction and coronary ostium detection rate. As a result, Extracted 3D aortic model using GAC showed the highest accuracy but also showed highest user-interaction results. Therefore, it is important to improve automatic segmentation algorithm in future
Recently, the cloud technology has made dynamical network changes by enabling the construction of a logical network without building a physical network. Despite recent research on the cloud, it is necessary to study security functions for the identification of fake virtual network functions and the encryption of communication between entities. Because the VNFs are open to subscribers and able to implement service directly, which can make them an attack target. In this paper, we propose a virtual public key infrastructure mechanism that detects a fake VNFs and guarantees data security through mutual authentication between VNFs. To evaluate the virtual PKI, we built a management and orchestration environment to test the performance of authentication and key generation for data security. And we test the detection of a distributed denial of service by using several AI algorithms to enhance the security in NFV.
Recently, there are increasing damages by ransomware in the world. Ransomware is a malicious software that infects computer systems and restricts user's access to them by locking the system or encrypting user's files saved in the hard drive. Victims are forced to pay the 'ransom' to recover from the damage and regain access to their personal files. Strong countermeasure is needed due to the extremely vicious way of attack with enormous damage. Malware analysis method can be divided into two approaches: static analysis and dynamic analysis. Recent malwares are usually equipped with elaborate packing techniques which are main obstacles for static analysis of malware. Therefore, this paper suggests a dynamic analysis method to monitor activities of ransomware. The proposed method can analyze ransomwares more accurately. The suggested method is comprised of extracting signatures of benign program, malware, and ransomware, and selecting the most appropriate signatures for ransomware detection.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.5
/
pp.1169-1177
/
2018
Modern society is a period of rapid digital transformation. This digital-centric business proliferation offers convenience and efficiency to businesses and individuals, but cyber threats are increasing. In particular, cyber attacks are becoming more and more intelligent and precise, and various attempts have been made to prevent these attacks from being discovered. Therefore, it is increasingly difficult to respond to such attacks. According to the cyber kill chain concept, the attacker penetrates to achieve the goal in several stages. We aim to detect one of these stages and neutralize the attack. In this paper, we propose a method to detect anomalous traffic caused by an agent attacking an external attacker, assuming that an agent executing a malicious action has been introduced in advance due to various reasons such as a system error or a user's mistake.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.