• Title/Summary/Keyword: Atrogin

Search Result 22, Processing Time 0.021 seconds

Conessine Treatment Reduces Dexamethasone-Induced Muscle Atrophy by Regulating MuRF1 and Atrogin-1 Expression

  • Kim, Hyunju;Jang, Minsu;Park, Rackhyun;Jo, Daum;Choi, Inho;Choe, Joonho;Oh, Won Keun;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.520-526
    • /
    • 2018
  • Conessine, a steroidal alkaloid, is a potent histamine H3 antagonist with antimalarial activity. We recently reported that conessine treatment interferes with $H_2O_2$-induced cell death by regulating autophagy. However, the cellular signaling pathways involved in conessine treatment are not fully understood. Here, we report that conessine reduces muscle atrophy by interfering with the expression of atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Promoter reporter assay revealed that conessine treatment inhibits FoxO3a-dependent transcription, $NF-{\kappa}B$-dependent transcription, and p53-dependent transcription. We also showed by quantitative RT-PCR and western blot assays that conessine treatment reduced dexamethasone-induced expression of MuRF1 and atrogin-1. Finally, we demonstrated that conessine treatment reduced dexamethasone-induced muscle atrophy using differentiated C2C12 cells. These results collectively suggest that conessine is potentially useful in the treatment of muscle atrophy.

Effects on Goat Meat Extracts on α-Glucosidase Inhibitory Activity, Expression of Bcl-2-Associated X (BAX), p53, and p21 in Cell Line and Expression of Atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 Myoblsts

  • Joohyun Kang;Soyeon Kim;Yewon Lee;Jei Oh;Yohan Yoon
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.359-373
    • /
    • 2023
  • This study examined the α-glucosidase inhibitory, and apoptosis- and anti-muscular-related factors of goat meat extracts from forelegs, hind legs, loin, and ribs. The goat meat extracts were evaluated for their α-glucosidase inhibitory activity. The gene and protein expression levels of Bcl-2-associated X (bax), p53, and p21 were examined by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting in AGS and HT-29 cells. The expression levels of Atrogin-1 and MHC1b were examined by RT-PCR in C2C12 myoblasts, and the expression levels of Atrogin-1, muscle atrophy F-box (MAFbx), muscle RING-finger protein-1 (MuRF-1), and myosin heavy chain-7 were investigated by immunoblotting. α-Glucosidase inhibitory activity was higher in ethanol extract than in hydrous and hot water extracts. BAX and p53 expression levels were higher (p<0.05) in AGS cells treated with goat meat extract than those of cells treated with no goat meat extract. In HT-29 cells, the protein expression levels of BAX, p53, and p21 were higher (p<0.05) in the cells treated with goat meat extract than those of cells not treated with goat meat extract. In dexamethasone-treated C2C12 cells, goat meat extract treatment lower (p<0.05) the expression of Atrogin-1 and lower (p<0.05) the expression of MAFbx and MuRF-1. The results of the present study indicate that goat meat extracts have α-glucosidase inhibitory activity in vitro. In addition, apoptosis was induced in AGS cells and HT-29 cells treated with goat meat extract, and anti-muscular atrophy activity was also observed in C2C12 cells treated with goat meat extract.

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

Trans-anethole Suppresses C2C12 Myoblast Differentiation

  • Mi-Ran Lee
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.190-200
    • /
    • 2023
  • Skeletal muscle, essential for metabolism, thermoregulation, and immunity, undergoes myogenic differentiation that results in myotube formation. Trans-anethole (TA), the major constituent in essential oil produced by anise, star anise, and fennel, whose function in skeletal muscle has not yet been elucidated. Therefore, we investigated whether TA influenced muscle differentiation in mouse C2C12 myoblasts. Cells were induced to differentiate using a differentiation medium with or without TA (50 or 200 mg/mL) daily for 5 days. We measured myotube length and diameter after differentiation days 1, 3, and 5 and analyzed the expression of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) using quantitative real-time PCR. Additionally, we observed the expression of total protein kinase B (Akt) and phosphorylated Akt (p-Akt) using western blotting. Our data showed that TA significantly induced the formation of smaller and thinner myotubes and reduced the myogenic factor expression. Furthermore, the atrogin-1 and MuRF-1 expression markedly increased by TA. Consistent with these findings, TA significantly decreased the expression of total Akt and p-Akt. Taken together, these results indicate that TA inhibits myogenic differentiation of C2C12 cells via reduction of both total Akt and p-Akt. Our findings may provide valuable insights into the impact of PAA on individuals at risk of muscle atrophy.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

Role of IL-15 in Sepsis-Induced Skeletal Muscle Atrophy and Proteolysis

  • Kim, Ho Cheol;Cho, Hee-Young;Hah, Young-Sool
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.312-319
    • /
    • 2012
  • Background: Muscle wasting in sepsis is associated with increased proteolysis. Interleukin-15 (IL-15) has been characterized as an anabolic factor for skeletal muscles. Our study aims to investigate the role of IL-15 in sepsis-induced muscle atrophy and proteolysis. Methods: Mice were rendered septic either by cecal ligation and puncture or by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg i.p.). Expression of IL-15 mRNA and protein was determined by reverse transcriptase polymerase chain reaction and Western blot analysis in the control and septic limb muscles. C2C12 skeletal muscle cells were stimulated in vitro with either LPS or dexamethasone in the presence and absence of IL-15 and sampled at different time intervals (24, 48, or 72 hours). IL-15 ($10{\mu}g/kg$) was intraperitoneally administered 6 hours before sepsis induction and limb muscles were sampled after 24 hours of sepsis. Cathepsin L activity was determined to measure muscle proteolysis. Atrogin-1 and muscle-specific ring finger protein 1 (MuRF1) expressions in limb muscle protein lysates was analyzed. Results: IL-15 mRNA expression was significantly lower in the limb muscles of septic mice compared to that of controls. Cathepsin L activity in C2C12 cells was significantly lower in presence of IL-15, when compared to that observed with individual treatments of LPS or dexamethasone or tumor necrosis factor ${\alpha}$. Further, the limb muscles of mice pre-treated with IL-15 prior to sepsis induction showed a lower expression of atrogin-1 and MuRF1 than those not pre-treated. Conclusion: IL-15 may play a role in protection against sepsis-induced muscle wasting; thereby, serving as a potential therapeutic target for sepsis-induced skeletal muscle wasting and proteolysis.

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.

Induction of Muscle Atrophy by Dexamethasone and Hydrogen Peroxide in Differentiated C2C12 Myotubes (C2C12 근관세포에서 dexamethasone 및 hydrogen peroxide에 의한 근위축 유도)

  • Park, Cheol;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1479-1485
    • /
    • 2017
  • Muscle atrophy due to aging, starvation, and various chronic diseases leads to a decrease in muscle fiber area and density due to reduced muscle protein synthesis and increased protein breakdown. This study investigated the effect of dexamethasone and hydrogen peroxide on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes. C2C12 myoblasts were differentiated into myotubes in differentiation medium. During myoblast differentiation, muscle-specific transcription factors, such as myogenin, and MyoD expression increased. Differentiated C2C12 myotubes exposed to noncytotoxic levels of dexamethasone and hydrogen peroxide showed a decrease in myotube diameter, which was associated with up-regulation of muscle-specific ubiquitin ligases, such as muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and down-regulation of myogenin and MyoD. These results demonstrated that dexamethasone and hydrogen peroxide induced atrophy through regulation of muscle-specific ubiquitin ligases and muscle-specific transcription factors in C2C12 myotubes. In this study, we confirmed the process of differentiation of C2C12 myoblasts into myotubes in in vitro experiments in the presence of atrophy. This muscle atrophy model of C2C12 cells induced by dexamethasone or hydrogen peroxide seems suited to studies of the mechanism of muscle atrophy suppression and to exploit the experiment for excavating new muscle atrophy.

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..