• Title/Summary/Keyword: Atomic Absorption Spectrometry

Search Result 120, Processing Time 0.025 seconds

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

The Simultaneous Extraction and Determination of Trace Copper and Zinc in Solvent Extraction (용매추출법에 의한 토양중의 미량 구리와 아연원소의 동시추출 및 정량에 관한 연구)

  • 정창웅;지석주;박종안
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.87-95
    • /
    • 1995
  • A rapid and selective co-extraction systems of copper and zinc-thiocyanate complex into various types of alkylamine for the simultaneous determination of two metal ions by atomic absorption spectrometry and ion chromatograph have been proposed. The quantitative extractions of Cu(II) and Zn(II) at 0.1 M-thiocyanate and 0.1 M-HCI were achieved with Aliquat 336-$CHCl_3$. The detection limits of Cu and Zn were 2 ppb and 0.9 ppb respectively.

  • PDF

Determination of Trace Metals in Fel Ursi (시판 웅담의 미량금속 정량에 관한 연구)

  • Lee, Sook-Yun;Yu, Bong-Shin;Mun, Hye-Ryoung;Kim, Sung-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.13 no.3
    • /
    • pp.102-105
    • /
    • 1982
  • Nine trace elements in Bear Galls(Fel Ursi) studied in this paper are Na, Mg, K, Ca, Cu, Zn, Fe, Pb and Ge. The contents of Na, Mg, K, Ca, Cu, Zn, Fe, Pb are determined by atomic absorption spectrometry and Ge is determined by graphite atomic absorption spectrometry. In both methods, the sample is digested with nitric-perchloric acid and then ashed. The results of analysis are shown in table and the result obtained from this study are as follows. a. The highest content of trace element of Bear Gall is Na and other elements are getting lower in order of K, Mg, Ca, Ge, Zn, Fe, Cu, and Pb. b. Particularly the content of Ge in Bear Gall was determined.

  • PDF

Expression of Human Heavy-Chain and Light-Chain Ferritins in Saccharomyces cerevisiae for Functional Foods and Feeds (Saccharomyces cerevisiae을 이용한 사람의 H-, L-ferritins 발현 연구)

  • Han, Hye-Song;Lee, Joong-Lim;Park, Si-Hong;Kim, Jae-Hwan;Kim, Hae-Yeong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • To produce human ferritins in yeast, human H-chain and L-chain ferritins were amplified from previously cloned vectors. Each amplified ferritin gene was inserted into the pYES2.1/V5-His-TOPO yeast expression vector under the control of the GAL1promoter. Western blot analysis of the recombinant yeast cells revealed that H-and L-chain subunits of human ferritin were expressed in Saccharomyces cerevisiae. Atomic absorption spectrometry (AAS) analysis demonstrated that the intracellular content of iron in the ferritin transformant was 1.6 to 1.8-fold higher than that of the control strain. Ferritin transformants could potentially supply iron-fortified nutrients for food and feed.

Determination of Arsenic, Lead and Selenium in Rice Flour by Graphite Furnace Atomic Absorption Spectrometry (흑연로원자흡수분광법에 의한 쌀분말시료중의 비소, 납, 셀레늄의 정량)

  • Cho, Kyung-Haeng;Suh, Jung-Ki
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • A graphite furnace atomic absorption spectrometry (GFAAS) with matrix modification has been used to determine trace amounts of arsenic, lead and selenium in rice flour samples. A mixed solution of palladium and magnesium nitrate was used as a matrix modifier to convert the analyte elements into a phase of higher thermostability and to increase the volatility of concomitants in graphite furnace. Matrix modification effects by the mixed solution were investigated for several elements (As, Cd, Cu, Pb, Se, Zn). It has been found that the matrix modifier substantially increase the pyrolysis and atomization temperature, and absorbance for As, Pb and Se. The concentration of As, Pb and Se in rice flour samples were determined by standard addition method with Zeeman background correction after microwave acid digestion. In this method the characteristic concentrations of As, Pb and Se are 26 ng/g, 18 ng/g, 24 ng/g on the basis of dry sample respectively.

  • PDF

Fundamental Studies of Gas-jet Assisted Radio Frequency Glow Discharge Atomic Absorption Spectrometry (원자흡수법에 의한 Gas-Jet Assisted RF 글로우방전 시스템의 특성 연구)

  • Choi, Seong-Kyu;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.69-77
    • /
    • 1995
  • The instrumentation and operating characteristics of a gas-jet assisted radio frequency glow discharge atomic absorption spectrometry(RF-GDAAS) are studied. The roles of discharge power, pressure as well as gas flow rate on the sample loss rate and absorbance are described in this paper. Results show that the optimum discharge conditions depend on pressure and discharge power as well as on the gas flow rate. The gas flow rate plays as an important parameter in RF-GDAAS. Absorbance increases as the gas flow rate increase up to 600ml/min., and the optimum absorbance is obtained at the pressure of 3 mbar. The absorbance increases when the discharge power increases as expected, however, the instability of the system due to the heat might be the trade off factor. The linear calibration curves of Ni and Cr in stainless steel(BAS 461-468) and brass (KSS 1121-1126) are obtained with RF-GDAAS.

  • PDF

Selective Determination Method of Cr(Ⅲ) and Cr(Ⅵ) by Aliquat 336 Extraction and Flame Atomic Absorption Spectrometry (Cr(Ⅲ) 와 Cr(Ⅵ)의 Aliquat 336을 이용한 추출분리 및 원자흡수분광법에 의한 정량)

  • Kim, Cheon Han;Hwang, Hye Ryeon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.418-422
    • /
    • 1999
  • A method is described for the selective determination of Cr(III) and Cr(VI) in aqueous solutios by flame atomic absorption spectrometry. Selective extraction of $Cr_2O_7^{2-}$ was performed by Aliquat 336/NIBK from the mixtures of $Cr^{3+}$ and $Cr_2O_7^{2-}$, and the extraction of $Cr^{3+}$ was followed after complex formation with citrate by using the same extractant. The concentraction of each analyte in the extract was determined by $N_2O-C_2H_2$ flame atomic absorption spectrometry. The recoveries of $Cr^{3+}$ and $Cr_2O_7^{2-}$ from 50mL of aqueous solution ranging 0.1~1.0 ${\mu}g/mL$ as Cr respectively by single extractions with 5 mL of 1%(V/V) Aliquat 336/MIBK were resulted as 98.8∼101.7%.

  • PDF

Development of Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Sensitive Determination of Trace Copper in Water and Beverage Samples by Flame Atomic Absorption Spectrometry

  • Wu, Chunxia;Zhao, Bin;Li, Yingli;Wu, Qiuhua;Wang, Chun;Wang, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.829-835
    • /
    • 2011
  • A dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) has been developed as a new approach for the extraction of trace copper in water and beverage samples followed by the determination with flame atomic absorption spectrometry. In the DLLME-SFO, 8-hydroxy quinoline, 1-dodecanol, and methanol were used as chelating agent, extraction solvent and dispersive solvent, respectively. The experimental parameters related to the DLLME-SFO such as the type and volume of the extraction and dispersive solvent, extraction time, sample volume, the concentration of chelating agent and salt addition were investigated and optimized. Under the optimum conditions, the enrichment factor for copper was 122. The method was linear in the range from 0.5 to $300\;ng\;mL^{-1}$ of copper in the samples with a correlation coefficient (r) of 0.9996 and a limit of detection of $0.1\;ng\;mL^{-1}$. The method was applied to the determination of copper in water and beverage samples. The recoveries for the spiked water and beverage samples at the copper concentration levels of 5.0 and $10.0\;ng\;mL^{-1}$ were in the range between 92.0% and 108.0%. The relative standard deviations (RSD) varied from 3.0% to 5.6%.

Determination of Lead in Different Samples by Atomic Absorption Spectrometry after Preconcentration with Dithizone Immobilized on Surfactant-Coated Alumina

  • Dadfarnia, S.;Haji Shabani, A.M.;Dehgan Shirie, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.545-549
    • /
    • 2002
  • A simple and rapid technique for the separation and preconcentration of lead in water and biological samples has been devised. Preconcentrationis based on the depositionof analyte onto a column packed with dithizone immobilized on sodium dodecyl sulfate coated alumina at pH $\geq$ 3. The trapped lead is eluted with 5 mL of 4 M nitric acid and determined by flame atomic absorption spectroscopy. A sample of 1 L, results in a preconcentration factor of 200 and the precision at 20${\mu}g$ $L^{-1}$ is 1.3%(n=8). The procedure is applied to tap water, well water, river water, vegetable extract and milk samples, and accuracy is assessed through recovery experiments and by independent analysis by furnace atomic absorption.