• Title/Summary/Keyword: Atmospheric sampling

Search Result 417, Processing Time 0.025 seconds

A Study on the Performance Optimization of a Continuous Monitoring Method for Hazardous VOCs in the Ambient Atmosphere (환경대기 중 유해성 VOC에 대한 자동연속 측정방법의 성능 최적화에 관한 연구)

  • Son, Eun-Seong;Seo, Young-Kyo;Lee, Dong-Hyun;Lee, Min-Do;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.523-538
    • /
    • 2009
  • Recently, there has been a keen demand for real-time automatic monitoring of VOCs not only in Korea but other developed countries. We carried out this study to evaluate and to optimize the performance of a continuous automatic monitoring system for hazardous VOCs (HVOCs) in the ambient atmosphere, using an on-line GC system. The online system normally consisted of a Nafion dryer prior to a cold trap of an automatic thermal desorption apparatus and a GC system equipped with two detectors, i.e. PID and ECD. Preliminary tests conducted to check out any contamination of the system revealed an evidence of significant artifact formation of benzene, and it was found that the Nafion dryer (even brand new one) is the source of the benzene artifact. Thus, all the subsequent experiments in this study was carried out inevitably by removing the Nafion dryer. The on-line GC method was investigated with a variety of QC/QA performance criteria such as repeatability, linearity, lower detection limits, and accuracy. In order to find out the best operating condition for the on-line GC system, three different types (in terms of adsorption strength) of cold trap combinations were tested, i.e. (i) Tenax-TA and Carbopack-B combination (weak and hydrophobic); (ii) Tenax-TA, Carbopack-X and Carboxen-1000 combination (strong and hydrophilic); and (iii) Tenax-TA and Carbopack-X combination (medium and hydrophobic/hydrophilic). The USEPA TO-17 manual method was selected as a reference method to evaluate the performance of the on-line method. A series of experiments revealed that the system performance was superior to others when a cold trap packed with hydrophilic adsorbents (Tenax-TA/Carbopack-X/Carboxen-1000 combination) was used and operated at $25^{\circ}C$. However, the system with a cold trap packed with a combination of Tenax-TA and Carbopack-X is more recommended for field applications since the carboxen-1000 adsorbent is too sensitive to water vapor, and hence the performance of the system might be very unstable to humid samples or during rainy days. Furthermore, the precision and accuracy criteria of the Tenax-TA/ Carbopack-X combination were generally compatible with the triple adsorbents cold trap. The continuous automatic monitoring method is, thus, considered very useful to real-time monitoring to understand the variations of VOCs concentrations in ambient air, as it adopts much simpler procedures in sampling, analysis, and data integration steps than manual monitoring methods. However, it should be noted that there is a high possibility of benzene artifacts formation through the Nafion dryer, which is often installed to remove water vapor in air samples before being adsorbed onto the cold trap. Therefore, if a Nafion dryer is used in any studies of monitoring VOCs, the benzene contamination should be carefully examined before carrying out obtaining the data.

Pollution Characteristics of Rainwater at Jeju Island during 2009~2010 (2009~2010년 제주지역 강우의 오염 특성 연구)

  • Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Lee, Yoon-Sang;Hyeon, Dong-Rim;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.818-829
    • /
    • 2013
  • The collection of rainwater samples was made at Jeju area during 2009~2010, and the major ionic species were analyzed. In the comparison of ion balance, conductivity, and acid fraction for the validation of analytical data, the correlation coefficients showed a good linear relationship within the range of 0.966~0.990. The volume-weighted mean pH and electric conductivity were 4.9 and $17.8{\mu}S/cm$, respectively, at the Jeju area. The volume-weighted mean concentrations of ionic species in rainwater were in the order of $Cl^-$ > $Na^+$ > $nss-SO_4{^{2-}}$ > $NH_4{^+}$ > $NO_3{^-}$ > $Mg^{2+}$ > $H^+$ > $nss-Ca^{2+}$ > $HCOO^-$ > $K^+$ > $PO_4{^{3-}}$ > $CH_3COO^-$ > $NO_2{^-}$ > $F^-$ > $HCO_3{^-}$ > $CH_3SO_3{^-}$. The ionic strength of rainwater was $0.26{\pm}0.21$ mM during the study period. The composition ratios of ionic species were such as 50.1% for the marine sources ($Na^+$, $Mg^{2+}$, $Cl^-$), 30.9% for the anthropogenic sources ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$), and 4.7% for the soil source ($nss-Ca^{2+}$), and 3.1% for organic acids ($HCOO^-$, $CH_3COO^-$). From the seasonal comparison, the concentrations of $NO_3{^-}$, $nss-Ca^{2+}$, and $nss-SO_4{^{2-}}$ increased in winter and spring seasons, indicating a reasonable possibility of long range transport from Asia continent. Especially, the acidifying contributions by major inorganic acids ($nss-SO_4{^{2-}}$ and $NO_3{^-}$) and organic acids ($HCOO^-$ and $CH_3COO^-$) were 87.6% and 12.4%, respectively. In comparison by sectional inflow pathway of air mass during the rainy sampling days, the concentrations of $nss-SO_4{^{2-}}$ and $NO_3{^-}$ were relatively high when the air mass was moved from the China continent into Jeju area.

Characteristics of Hazardous Volatile Organic Compounds (HVOCs) at Roadside, Tunnel and Residential Area in Seoul, Korea (서울시 도로변, 터널 및 주거지역 대기 중 유해 휘발성 유기화합물의 특성)

  • Lee, Je-Seung;Choi, Yu-Ri;Kim, Hyun-Soo;Eo, Soo-Mi;Kim, Min-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.558-568
    • /
    • 2011
  • Hazardous volatile organic compounds (HVOCs) have been increasingly getting concern in urban air chemistry due to photochemical smog as well as its toxicity or potential hazards. In this study, we investigated their concentrations and the properties in tunnel, urban roadside and residential area. As a result, among 36HVOCs measured in this study, BTEX (benzene, toluene, ethylbenzene, xylene) and dichlorodifluoromethane, 1,2,4-trimethylbenzene, trichlorofluoromethane were detected above the concentration of $1{\mu}g/m^3$ in every sampling site and the most abundant compound was toluene. The other compounds were detected at trace level or below the detection limit. In addition, we found that three CFCs (chlorofluorocarbons), such as CFC-12, CFC-11, CFC-113, were persistently detected because of the emission in the past. Toluene to benzene ratio (T/B) at tunnel and roadside were calculated to be 4.3~5.3 and at residential area 15.4, suggesting that the residential area had several emission sources other than car exhaust. The ratio of X/E (m,p-xylene to ethylbenzene) ratio was calculated to be 1.8~2.1 at tunnel, 1.7 at roadside and 1.2 at residential area, which means this ratio reflected well the relative photochemical reactivity between these compounds. Good correlation between m,p-xylene and ethylbenzene ($r^2$ > 0.85) were shown in every study sites. This indicated that correlation between $C_2$-alkylbenzenes were not severely affected by 3-way catalytic converter. In this study, it was demonstrated that the concentration of benzene was very low, compared with national air quality standard (annual average of $5{\mu}g/m^3$). Its concentration were $2.52{\mu}g/m^3$ in roadside and $1.34{\mu}g/m^3$ in residential area. We thought this was the result of persistent policy implementation including the reduction of benzene content in gasoline enforced on January 1, 2009.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

Comparison of the Real-time Measurements for PM2.5 and Quality Control Method (PM2.5 자동측정장비 비교 및 정도관리 방안)

  • Park, Mikyung;Park, Jin Su;Jo, Mira;Lee, Yong Hwan;Kim, Hyun Jae;Oh, Jun;Choi, Jin Soo;Ahn, Joon Young;Hong, You Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.616-625
    • /
    • 2017
  • Measurements using five real-time particle samplers were compared to measurements using three NRM (National Reference Method system) filter-based samplers(Gravimetric method) at Incheon, Korea, between May and August, 2014. The purpose of this study was to suggest the quality assurance/quality control (QA/QC) method of each instrument for use in a real-time continuous particle sampler to measure the mass of airborne particles with an aerodynamic diameter less than $2.5{\mu}m$ ($PM_{2.5}$). Five real-time particle samplers of BAM1020, FH62C_14, TEOM, PM-711 and SPM-613 were evaluated by comparing its measured 23 hr average $PM_{2.5}$ concentrations with those measured with NRM filter-based samplers simultaneously. The parameters(e.g. Inlet heating condition, Slope factor, Film response, Intercept, Background, Span value) of the real-time samplers were optimized respectively by conducting test performance evaluation during 7 days in field sampling. For example, inlet heating temperature of TEOM sampler controls $35{\sim}40^{\circ}C$ to minimize the fluctuation of the real-time measurement data and background value of BAM1020 is the key factor affecting the accuracy of $PM_{2.5}$ mass concentration. We classified the $PM_{2.5}$ concentration according to relative humidity (80%) to identify water absorbed in aerosols by measuring the ${\beta}$-ray samplers(BAM1020, FH62C_14) and TEOM. ${\beta}$-ray samplers were not strongly affected by relative humidity that the difference of the average $PM_{2.5}$ concentration was about 5%. On the other hand, The TEOM sampler overestimated $PM_{2.5}$ mass concentration about 15% at low relative humidity (<80%).

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

A Study on the Concentration Distribution of Airborne Heavy Metals in Major Industrial Complexes in Korea (국내 주요 산업단지 대기 중 중금속농도 분포에 관한 연구)

  • Kang, Byung-Wook;Kim, Min-Ji;Baek, Kyung-Min;Seo, Young-Kyo;Lee, Hak Sung;Kim, Jong-Ho;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.269-280
    • /
    • 2018
  • This paper reports the results of field evaluation to determine the levels of heavy metals in major industrial complexes in Korea over a seven year period (2007~2013). The measurement of heavy metal was conducted using quartz fiber filter sampling and ICP-AES analysis. In order to validate the analytical performance of these methods, studies were also carried out to investigate data quality control(QC) parameters, such as the method detection limit (MDL), repeatability, and recovery efficiencies. The average concentrations of total suspended particulates (TSP) for the nine industrial complexes in Korea were $104{\sim}169{\mu}g/m^3$, which was higher than other industrial complexes and urban areas. The Sihwa and Banwol industrial complexes were shown to be the biggest contributing sources to high TSP emission ($159{\mu}g/m^3$ and $169{\mu}g/m^3$, respectively). The concentrations of heavy metals in TSP were higher in the order of Fe>Cu>Zn, Pb, Mn>Cr, Ni, As and Cd. It was observed that Fe was the highest in the Gwangyang and Pohang steel industrial complexes. The concentrations of Zn and Pb were high in Onsan, Sihwa and Banwol industrial complexes, and this was attributed to the emission from the nonferrous industry. Additionally, Cr and Ni concentrations were high in the Sihwa and Banwol industrial complexes due to plating industry. On the other hand, Ulsan and Onsan industrial complexes showed high Cr and Ni concentrations as a response to the emission of metal industry related to automobile. The correlation analysis revealed the high correlation between Cr and Ni in plating industry from Sihwa and Banwol industrial complexes. Adding to this, components related to coal combustion and road dust showed high correlation in Pohang and Gwangyang industrial complexes. Then Onsan and Ulsan industrial complexes showed high correlation among components related to the nonferrous metals.

Seasonal Characteristics of Atmospheric PM10 and PM2.5 in Iksan, Korea (익산지역 대기 중 PM10과 PM2.5의 계절별 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • The seasonal characteristics of atmospheric particulate matter (PM) were evaluated through the measurement of $PM_{10}$ (particles with an aerodynamic diameter of less than 10 ${\mu}m$) and $PM_{2.5}$ (particles with an aerodynamic diameter of less than 2.5 ${\mu}m$) collected in the downtown area of Iksan city over roughly two weeks in each season of 2004. During the sampling period, 54 samples of $PM_{10}$ and $PM_{2.5}$ were collected and then measured for mass concentrations of PM and its water-soluble inorganic ion species. The concentrations of $PM_{10}$ and $PM_{2.5}$ were highly variable on a daily time scale in all seasons, especially in fall. Annual concentrations of $PM_{10}$ and $PM_{2.5}$ were $54.7{\pm}21.6\;{\mu}g/m^3$ and $34.0{\pm}13.4\;{\mu}g/m^3$, respectively. The daily concentrations of the analyzed ions similarly showed a pronounced variation, although a difference between seasons existed. Among them, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the most abundant ions in all seasons, contributing up to 32% of $PM_{10}$ and 39% of $PM_{2.5}$. The contribution of $SO_4^{2-}$ and $NO_3^-$ showed a seasonal variation, as $SO_4^{2-}$ was the highest during spring and summer and $NO_3^-$ was the highest during fall and winter. Non-seasalt $SO_4^{2-}$ and $NO_3^-$ were found to exist mainly as neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ due to the high concentration of $NH_4^+$ in PM samples, which were a major form of airborne PM in all seasons. Seasonal characteristics of $PM_{10}$ and $PM_{2.5}$ in Iksan were described in relation to the temporal variations of daily concentration of PM and its inorganic ion species including inter-particle reactions.

Concentration Characteristics of Atmospheric PM2.5, PM10 and TSP during the Asian Dust Storm in Iksan Area (익산지역에서 황사발생시 PM2.5, PM10 TSP의 농도 특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Kim, Kyung-Suk;Kim, Mi-Kyung;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.408-421
    • /
    • 2007
  • The concentration characteristics of atmospheric particle matters (PM) including $PM_{2.5},\;PM_{10}$, and TSP were evaluated through the measurement data of PM_{2.5}$ (fine particulate), PM_{10-2.5}$ (coarse particulate), and PM_{over-10}$ collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in spring of 2006 in Iksan area. During the sampling period of 10-15 March and 24 days from 8 April to 2 May, 32 samples for PM of each size fractions were collected, and then measured for PM mass concentrations and water-soluble inorganic ion species. Average concentrations of $PM_{2.5},\;PM_{10}$, TSP were $57.9{\pm}44.1mg/m^3$, $96.6{\pm}89.1mg/m^3$, and $114.8{\pm}99.7mg/m^3$, respectively. Water-soluble inorganic ion fractions to PM mass were found to be 36.5%, 18.0%, and 11.1% for $PM_{2.5}$, $PM_{10-2.5}$ and $PM_{over-10}$, respectively. By showing the high concentrations of PM samples during Asian dust events, those three fractions of PM were distinguished between the samples of Asian dust event and the samples of no event. However, the increase of PM concentrations observed during Asian dust events showed a different pattern for some Asian dust events. The differences of those three fractions in the size distribution may depend on differences on place of occurrence of Asian dust storm and course of transport from China continent to Iksan area in Korea. However, the extent of PM mass contribution during Asian dust events was generally dominated by the coarse particles rather than the fine fraction of PM. The variations of water-soluble inorganic ion species concentration in those three PM fractions between the samples of Asian dust event and the samples of no event were also discussed in this study.

Mass Concentration and Ionic Composition of PM2.5 Observed at Ieodo Ocean Research Station (이어도 해양과학기지에서 관측된 PM2.5 농도와 이온조성)

  • Hwang, G.;Lee, M.;Shin, B.;Lee, G.;Lee, J.;Shim, J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.501-511
    • /
    • 2008
  • The Objective of this study is to examine the characteristic of fine aerosol $(PM_{2.5})$ obtained at Ieodo Ocean Research Station, which lies between the eastern part of China and the south western part of Korea. The average mass concentration of $PM_{2.5}$ was $21.5{\pm}17.0{\mu}g/m^3$ during June $2004{\sim}June 2006$. The concentration was the highest in winter $(34.8{\mu}g/m^3)$ and lowest in summer $(16.5{\mu}g/m^3)$. Water soluble ions were measured for samples collected from December 2004 to September 2005. Among them, $SO_4^{2-}\;and\;NH_4^+$ were the most abundant species and accounted for 32.2% and 14.2% of the $PM_{2.5}$ mass, respectively. The mass fraction of $SO_4^{2-}$ was higher in winter (42%) than in spring (26%). Nitrate concentrations were much lower than those of sulfate due mainly to evaporation during sampling period. The cluster analysis of backward airmass trajectories showed that the high mass loadings $(26.9{\mu}g/m^3\;on\;average)$ were associated with air originating inland China. Also, the seasonal variation of $PM_{2.5}$ mass was well correlated with the frequency of westerly winds passing through the western part of China. During the ABC-EAREX2005 (March 2005), $PM_{2.5}$ mass and major ionic concentrations were higher at Ieodo, compared with $PM_{2.5}$ measurements at Gosan while they were similar in variation pattern. These results suggested that $PM_{2.5}$ mass and its ionic composition of Ieodo Ocean Research Station were greatly influenced by continental outflows from China.