• Title/Summary/Keyword: Atmospheric particle

Search Result 769, Processing Time 0.037 seconds

Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

  • Saputra, Devina;Yoon, Jin-Ha;Park, Hyunju;Heo, Yongju;Yang, Hyoseon;Lee, Eun Ji;Lee, Sangjin;Song, Chang-Woo;Lee, Kyuhong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-${\gamma}$ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be $12.5{\mu}g/m^3$) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

Evaluation of Environmental Circumstance Within Swine and Chicken Houses in South Korea for the Production of Safe and Hygienic Animal Food Products (일부지역 양돈장 및 양계장 공기중 박테리아, 진균, 내독소 농도)

  • Kim, Young-Hwan;Suh, Hyung-Joo;Kim, Jin-Man;Jung, Yeon-Hoon;Moon, Kyong-Whan
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.623-628
    • /
    • 2008
  • This study was undertaken to determine the concentrations of airborne bacteria, fungi, particles, and endotoxin in swine and chicken houses. Six swine buildings and seven chicken houses were randomly selected in southern Gyonggi Province, South Korea. The geometric mean concentrations of airborne bacteria in swine and chicken houses were $2.7{\times}10^5\;CFU/m^3$ and $5.6{\times}10^7\;CFU/m^3$, respectively. The airborne bacteria concentrations in chicken houses were significantly higher than those of swine houses (p<0.05). The geometric mean concentration of airborne fungi in swine houses was $4.9{\times}10^3\;CFU/m^3$, which was higher than the value of $2.1{\times}10^3\;CFU/m^3$ found in chicken houses. The mean concentrations of airborne particles and endotoxin in swine houses were $3.48\;mg/m^3$ and $943.1\;EU/m^3$, and they were $15.43\;mg/m^3$ and $1,430.5\;EU/m^3$ in chicken houses, respectively. A significant difference between swine and chicken houses was found for total dust (p<0.05), but not for endotoxin. In this study, the concentrations of endotoxin in both swine and chicken houses as well as particles in chicken houses were high, and in about 50% of the samples exceeded the worker health safety levels of $614\;EU/m^3$ suggested in previous studies. These results may indicate a considerable respiratory hazard for workers in these environments.

Crystallization of Hydrazinium Nitroformate(HNF) as Eco-friendly Oxidizer (친환경 산화제 HNF 결정화 연구)

  • Kim, Jina;Kim, Min Jun;Min, Byoung Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.76-82
    • /
    • 2016
  • Recently, environmental sustainability of the transitional explosives and propellants is an issue of growing importance in energetic materials. For examples, ammonium perchlorate(AP) as an solid propellants oxidizer could create a poisonous gas and atmospheric pollutions, such as HCl. Among the several oxidizers, hydrazinium nitroformate(HNF) is an effective candidate substance for eco-friendly oxidizer, which has high density, pressure index, and less smog generating property during combustion for the thrust control system. This study was controlled the size distribution and shapes through various conditions. Length and diameter ratio(L/D) of crystals has below 1 : 3, and the particle size was two types of $200{\mu}m$ and $50{\mu}m$.

Pin-to-plate DBD system을 이용하여 HMDS/$O_2$ 유량 변화에 따라 증착된 $SiO_2$ 박막 특성 분석

  • ;Park, Jae-Beom;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.447-447
    • /
    • 2010
  • 일찍이 $SiO_2$ (Silicon dioxide) 박막은 다양한 분야에서 유전층, 부식 방지층, passivation층 등의 역할을 해왔다. 그리고 이러한 박막 공정은 대부분 진공의 환경에서 그 공정이 이루어지고 있다. 하지만 이러한 진공 system은 chamber, loadlock 그리고 펌프 등의 다양한 진공장비로 인한 생산 비용 증가, 공정의 복잡성뿐만 아니라 공정의 대면적화에 어려움을 지니고 있다. 그리고 최근 flexible display의 제조 공정에서 polymer 혹은 plastic 기판을 제조 공정에 적용시키기 위해 저온 공정이 필수적으로 요구 되고 있다. 이러한 기술적 한계를 뛰어 넘기 위해 최근 많은 연구가들은 atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD)에 대해 지속적으로 다양한 연구를 하고 있다. 본 연구에서는 remote-type의 modified pin-to-plate dielectric barrier discharge (DBD) 시스템을 이용한 $SiO_2$ 무기 박막 증착에 관해 연구하였다. $O_2$/He/Ar의 gas와 5 kV AC power (30 kHz)의 전원장치를 통해 고밀도 대기압 플라즈마를 발생시켰고, silicon precursor로는 hexamethyldisilazane (HMSD)를 사용하였다. 먼저 HMDS와 $O_2$ gas의 flow rate 변화에 따른 증착률을 조사하였고 그 다음으로 박막의 조성 및 표면 특성을 조사하였다. HMDS의 유량이 100 ~ 300 sccm으로 증가함에 따라 증착속도는 증가했다. 하지만 FT-IR을 통해 HMDS의 유량이 증가하면 반응에 참여할 산소 분자의 부족으로 인해 $-(CH_3)_X$의 peak intensity가 증가하고, -OH의 peak intensity가 점차 감소함을 관찰 할 수 있었다. 또한 증착된 박막의 표면에 particle과 불균일한 surface morphology 등을 SEM image를 통해 관찰 하였다. 산소 유량이 탄소와 관련된 많은 불순물들의 제거에 도움이 됨에도 불구하고 14 slm 이상의 산소가 반응기 내로 주입되게 되면 대기압 플라즈마의 discharge가 불안정하게 되어 공정효율을 저하시키는 요소가 되었다. 결과적으로 HMDS (150 sccm)/$O_2$ (14 slm)/He (5 slm)/Ar (3 slm)의 조건에서 약 42.7 nm/min 증착률을 가지며, 불순물이 적고 surface morphology가 깨끗한 $SiO_2$ 박막을 증착할 수 있었다.

  • PDF

A Study of Weldability for Pure Titanium by Nd:YAG Laser(II) - Welding Properties of Butt Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(II) - 맞대기 용접 특성 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Song, Moo-Keun;Park, Seung-Ha
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • Recently, as titanium and titanium alloys are being increasingly used in wide areas, there are on-going researches to obtain high quality weld zone. In particular, growing interest is being drawn to laser welding, which involves low heat input and large aspect ratio in various welding processes and can facilitate shield in atmospheric condition compared with electron beam welding. The first report covered the analysis of embrittlement by the bead color of weld zone through quantitative analysis of oxygen and nitrogen and measurement of hardness as basic experiment to apply laser welding to titanium. Results indicated that the element that affect embrittlement the most was nitrogen, and as embrittlement and oxygenation go on, bead color changed to silver, gold, brown, blue and gray. This study performed butt welding of pure titanium and STS304 by using 1kW CW Nd:YAG laser, and to find out basic physical properties, evaluated welding performance by laser output, welding speed, root gap and misalignment etc, and examined mechanical properties through tensile stress and Erichsen test. The reason particles of pure titanium welded metal and HAZ are greater than STS304 is because they are pure metal and do not include many impure elements that work as nuclei in case of resolidification, thus becoming coarse columnar crystals eventually. In addition, the reason STS304 requires more energy during welding than pure titanium is because the particle size of base metal is smaller.

Investigation of the Concentration of PM2.1 & PM10 and Alveolar Deposition Ratio (미세먼지(PM10)와 초미세먼지(PM2.1)의 농도와 폐포 침착율 조사)

  • Kim, Seong Cheon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.126-133
    • /
    • 2019
  • Objectives: In this study, a nine-stage cascade impactor was used to collect dust, and the concentration of $PM_{2.1}$ & $PM_{10}$ and alveolar deposition ratio were investigated. Methods: This study was conducted at Kunsan National University from May to June 2016. A nine-stage Cascade Impactor was used to analyze the concentrations of fine and ultrafine dust and to estimate the alveolar deposition rate by particle size of atmospheric dust particles. The pore size of each stage of the collector used in this study gradually increased from F to 0, with the F-stage as the last stage. Results: The mass fraction of PM showed a bimodal distribution divided into $PM_{2.1}$ & $PM_{10}$ based on $2.1-3.1{\mu}m$. The average mass fraction of particulate matter in the range of $2.1-3.1{\mu}m$ was 44%, and the area occupied by $PM_{2.1}$ was similar. Therefore, the Gunsan area is considered to be a region where there are similar effects from anthropogenic and natural sources. Conclusion: Dust collecting efficiency increased with the stage of collecting fine dust, and the efficiency of collection was very low at the stage of collecting ultra-fine dust. The seasonal overall efficiency of the Cascade Impactor was 44% in spring and 37.4% in summer, and the average overall efficiency was 40.7%. The alveolar deposition rate of $PM_{2.1}/PM_{10}$ during the sampling period was estimated to be about 75% deposited in the alveoli.

Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area (백령도 및 서울 대기오염집중측정소 에어로졸 질량 분석기 자료를 이용한 대기 중 에어로졸 화학적 특성 연구)

  • Park, Taehyun;Ban, Jihee;Kang, Seokwon;Ghim, Young Sung;Shin, Hye-Jung;Park, Jong Sung;Park, Seung Myung;Moon, Kwang Joo;Lim, Yong-Jae;Lee, Min-Do;Lee, Sang-Bo;Kim, Jeongsoo;Kim, Soon Tae;Bae, Chang Han;Lee, Yonghwan;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.430-446
    • /
    • 2018
  • To improve understanding of the sources and chemical properties of particulate pollutants on the Korean Peninsula, An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine particle ($NR-PM_1$) from 2013 to 2015 at Baengnyeong Island and Seoul metropolitan area (SMA), Korea. The chemical composition of $NR-PM_1$ in Baengnyeong island was dominated by organics and sulfate in the range of 36~38% for 3 years, and the organics were the dominant species in the range of 44~55% of $NR-PM_1$ in Seoul metropolitan area. The sulfate was found to be more than 85% of the anthropogenic origin in the both areas of Baengnyeong and SMA. Ratio of gas to particle partition of sulfate and nitrate were observed in both areas as more than 0.6 and 0.8, respectively, representing potential for formation of additional particulate sulfate and nitrate. The high-resolution spectra of organic aerosol (OA) were separated by three factors which were Primary OA(POA), Semi-Volatility Oxygenated Organic Aerosol (SV-OOA), and Low-Volatility OOA(LV-OOA) using positive matrix factorization (PMF) analysis. The fraction of oxygenated OA (SOA, ${\fallingdotseq}OOA$=SV-OOA+LV-OOA) was bigger than the fraction of POA in $NR-PM_1$. The POA fraction of OA in Seoul is higher than it of Baengnyeong Island, because Seoul has a relatively large number of primary pollutants, such as gasoline or diesel vehicle, factories, energy facilities. Potential source contribution function (PSCF) analysis revealed that transport from eastern China, an industrial area with high emissions, was associated with high particulate sulfate and organic concentrations at the Baengnyeong and SMA sites. PSCF also presents that the ship emissions on the Yellow Sea was associated with high particulate sulfate concentrations at the measurement sites.

Comparison of PM1, PM2.5, PM10 Concentrations in a Mountainous Coastal City, Gangneung Before and After the Yellow Dust Event in Spring (봄철 황사 전후 산악연안도시, 강릉시에서 PM1, PM2.5, PM10의 농도비교)

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.633-645
    • /
    • 2008
  • In order to investigate the variations and corelation among $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations, the hourly concentrations of each particle sizes of 300nm to $20{\mu}m$ at a city, Gangneung in the eastern mountainous coast of Korean peninsula have been measured by GRIMM aerosol sampler-1107 from March 7 to 17, 2004. Before the influence of the Yellow Dust event from China toward the city, $PM_{10},\;PM_{2.5}\;and\;PM_1$, concentrations near the ground of the city were very low less than $35.97{\mu}g/m^3,\;22.33{\mu}g/m^3\;and\;16.77{\mu}g/m^3$, with little variations. Under the partial influence of the dust transport from the China on March 9, they increased to $87.08{\mu}g/m^3,\;56.55{\mu}g/m^3\;and\;51.62{\mu}g/m^3$. $PM_{10}$ concentration was 1.5 times higher than $PM_{2.5}$ and 1.85 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 1.49 with an averaged 0.5 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 0.4 with an averaged 0.25. $PM_{10}\;and\;PM_{2.5}$ concentrations were largely influenced by particles smaller than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. During the dust event from the afternoon of March 10 until 1200 LST, March 14, $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations reached $343.53{\mu}g/m^3,\;105{\mu}g/m^3\;and\;60{\mu}g/m^3$, indicating the $PM_{10}$ concentration being 3.3 times higher than $PM_{2.5}$ and 5.97 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 7.82 with an averaged 3.5 and one of $(PM_{2.5}-PM_1)/PM_1$, had a maximum value of 2.8 with an averaged 1.5, showing $PM_{10}\;and\;PM_{2.5}$ concentrations largely influenced by particles greater than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. After the dust event, the most of PM concentrations became below $100{\mu}g/m^3$, except of 0900LST, March 15, showing the gradual decrease of their concentrations. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 3.75 with an averaged 1.6 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 1.5 with an averaged 0.8, showing the $PM_{10}$ concentration largely influenced by corse particles than $2.5{\mu}m$ and the $PM_{2.5}$ by fine particles smaller than $1{\mu}m$, respectively. Before the dust event, correlation coefficients between $PM_{10},\;PM_{2.5}\;and\;PM_1$, were 0.89, 0.99 and 0.82, respectively, and during the dust event, the coefficients were 0.71, 0.94 and 0.44. After the dust event, the coefficients were 0.90, 0.99 and 0.85. For whole period, the coefficients were 0.54, 0.95 and 0.28, respectively.

Retrieval of the Variation of Optical Characteristics of Asian Dust Plume according to their Vertical Distributions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 관측을 통한 황사의 이동 고도 분포에 따른 광학적 특성 변화 규명)

  • Shin, Sung-Kyun;Park, Young-San;Choi, Byoung-Choel;Lee, Kwonho;Shin, Dongho;Kim, Young J.;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2014
  • The continuous observations for atmospheric aerosols were conducted during 3 years (2009 to 2011) by using Gwangju Institute of Science and Technology (GIST) multi-wavelength Raman lidar at Gwangju, Korea ($35.10^{\circ}N$, $126.53^{\circ}E$). The aerosol depolarization ratios calculated from lidar data were used to identify the Asian dust layer. The optical properties of Asian dust layer were different according to its vertical distribution. In order to investigate the difference between the optical properties of each individual dust layers, the transport pathway and the transport altitude of Asian dust were analyzed by Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We consider that the variation of optical properties were influenced not only their transport pathway but also their transport height when it passed over anthropogenic pollution source regions in China. The lower particle depolarization ratio values of $0.12{\pm}0.01$, higher lidar ratio of $67{\pm}9sr$ and $68{\pm}9sr$ at 355 nm and 532 nm, respectively, and higher ${\AA}ngstr\ddot{o}m$ exponent of $1.05{\pm}0.57$ which are considered as the optical properties of pollution were found. In contrast with this, the higher particle depolarization ratio values of $0.21{\pm}0.09$, lower lidar ratio of $48{\pm}5sr$ and $46{\pm}4sr$ at 355 nm and 532 nm, respectively, and lower ${\AA}ngstr\ddot{o}m$ exponent of $0.57{\pm}0.24$ which are considered as the optical properties of dust were found. We found that the degree of mixing of anthropogenic pollutant aerosols in mixed Asian dust govern the variation of optical properties of Asian dust and it depends on their altitude when it passed over the polluted regions over China.

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.