• Title/Summary/Keyword: Atmospheric methane

Search Result 120, Processing Time 0.023 seconds

Comparison of Methane Emissions by Rice Ecotype in Paddy Soil

  • Tae Hee Kim;Jisu Choi;Seo Young Oh;Seong Hwan Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.145-145
    • /
    • 2022
  • South Korea greenhouse gas emissions have increased year by year, resulting in a total emission of 727.6 million tons of CO2 eq in 2018, a 2.5% increase compared to 2017. Among them, the agricultural sector emitted 21.2 million tons of CO2 eq., accounting for 2.9% of the total. Among the greenhouse gases emitted from the agricultural sector, a particularly problematic is methane gas emitted from rice paddies. Methane is one of the important greenhouse gases with a global warming potential (GWP) that is about 21 times higher than that of carbon dioxide due to its high infrared absorption capacity despite its relatively short remaining atmospheric period. Since the pattern of methane generation varies depending on the rice variety and ecological type, research related to this is necessary for accurate emission calculation and development of reduction technology. Accordingly, a study was conducted to find out the changes in greenhouse gas emission according to rice varieties and ecology types. As for the rice eco-type cultivar, early maturing cultivar (Haedamssal) and medium-late rice cultivar (Saeilmi) were used. Haedamssal was transplanted on May 25 and June 25, and Saeilmi was transplanted on June 10 and June 25. The amount of methane generated according to the growing day showed a tendency to increase as the planting period was earlier. The difference between varieties was that Haedamssal showed higher methane production than Saeilmi. The total CH4 flux in the saeilmi was 18.7 kg·h-1(Jun 10 transplanting), 12.4 kg·h-1(Jun 25 transplanting) during rice cultivation. Lower methane emission was observed in Saeilmi than in Haedam rice. In addition, the earlier the planting period, the higher the methane emission. This study is the result of the first year of research, and it is planned to investigate the amount of greenhouse gas emission between double cropping and single cropping using wheat cultivation after harvest for each ecological type.

  • PDF

Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition (산소부화조건에서의 반응기구 검토)

  • Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF

Study of Methane Storage through Structure Transition of Gas Hydrate (가스하이드레이트 구조 변형을 통한 메탄 저장에 관한 연구)

  • Lee, Ju-Dong;Lee, Man-Sig;Kim, Young-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-57
    • /
    • 2006
  • Structure H formation experiments were conducted in a semi-batch stirred vessel using methane as the small guest substance and neohexane(NH), tert-butylmethylether(TBME) and methylcyclohexane(MCH) as the large molecule guest substance (LMGS). The results indicate that the rates of gas uptake and induction times are generally dependent on the magnitude of the driving force. When tert-butyl methyl ether is used as the LMGS rapid hydrate formation, much smaller induct ion time and rapid decomposition can be achieved. Liquid-liquid equilibrium (LLE) data for the above LMGS with water have been measured under atmospheric pressure at 275.5, 283.15K, and 298.15K. It was found that TBME is the most water soluble followed by NM and MCH. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH

  • PDF

A Study on the Estimation of Landfill Gas Emission by LAEEM in KOREA (LAEEM에 의한 전국 매립가스 발생량 추정에 대한 연구)

  • 장영기;서정배
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.499-506
    • /
    • 1998
  • Recently almost wastes except recycled garbage are dumped into landfill site in Korea. Landfills are significant compounds (NMOCS) are produced. NMOCS include reactive volative organic compound (VOC) and hazardous air pollutants. LAEEM (Landfill Air Emissions Estimation Model) developed by Control Technology Center, V.S. EPA is used to estimate a mount of landfill gas from all landfills. As the result, landfill gas 4,121,000 ton, carbon dioxide 2,951,000 ton, methane 1,1120,000 ton are estimated as emissions from all landfills in Korea.

  • PDF

Evaluation of Methane Oxidation Potentials of Alpine Soils Having Different Forestation Structure in Gajwa mountain (경상남도 가좌산의 소나무, 참나무, 밤나무 우점 산림토양 별 메탄 산화능 평가)

  • Park, Yong Kwon;Kim, Sang Yoon;Gwon, Hyo Suk;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • BACKGROUND: Forest soils contain microbes capable of consuming atmospheric methane ($CH_4$), an amount matching the annual increase in $CH_4$ concentration in the atmosphere. However, the effect of plant residue production by different forest structure on $CH_4$ oxidation is not studied in Korea. The objective of this study was to evaluate the effect of Korean alpine soils having different forestation structure on $CH_4$ uptake rates. METHODS AND RESULTS: the $CH_4$ flux was measured at three sites dominated with pine, chestnut and oak trees in southern Korea. The $CH_4$ uptake potentials were evaluated by a closed chamber method for a year. The $CH_4$ uptake rate was the highest in the pine tree soil ($1.05mg/m^2/day$) and then followed by oak ($0.930mg/m^2/day$) and chestnut trees ($0.497mg/m^2/day$). The $CH_4$ uptake rates were highly correlated to soil organic matter and moisture contents, and total microbial and methanotrophs activities. Different with the general concent, there was no any correlation between $CH_4$ oxidation rates, and soil temperature and labile carbon concentrations, irrespective with tree species. CONCLUSION: Conclusively, the methane oxidation rate was correlated in positive manner with organic matter, abundance of methanotrophs. Methane oxidation was different among tree species. This results could be used to estimate methane oxidation rate in forest of Korea after complementing information about statistical data and methane oxidation of other site.

On the Regional Background Levels of $CH_4$ Observed Peninsula in Korea during 1990~1992 (한국의 태안반도에서 관측된 $CH_4$의 지역적 배경농도에 관한 연구 -1990~1992년 자료를 중심으로-)

  • 정용승;이근준
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.33-48
    • /
    • 1992
  • Since November 1990, the observations of methane (CH4) level have been carried out at Tae-ahn Peninsula (TAP) in Korea. Analysis on atmospheric data obtained in the period from November 1990 to August 1992 is carried out and the results are included in this study. We 임ole that CIL does not have a clear seasonal cycle with a minor maximum in August- september and with a minimum in June-July. The variations in monthly average level are much larger with 1765.01∼ 1857.21 pub (amplitude 92.20 ppb). The occurrence of a minimum in June-July is due to the inflow of the North Pacific air, an increase of OH radical and due to a decrease in CH4 emission from rice paddy. A maximum in August and September appears to result from an increase in organic materials in agriculture (rice paddy) and forests, inputs of local sources due to weak airflows, stagnation of the warm and moist air and from a decrease in OH radical.'rho present analysis indicates that according to CH4 data from Mongolia and from several sites in North Pacific TAP is influenced as much as 31 pub in average from the inputs of Chinese omission. When the atmospheric CH4 of TAP is compared with data observed at Korea National University of Education (KNU), the values of KNU are higher (127 ppb) than those of TAP. It is clear that air samples taken at KNU are influenced strongly by local sources in central Korea than those at TAP. According to analysis of trajectories and airflows, we find that there are 4 types in classification. Firstly, when an air flow is originated mainly in China values of CH4 gas are in medium ranges. Secondly, when an airflow is from both local (Korea) and China we find higher values. Thirdly, with an airflow from both local (Korea) and Japan origins medium values are recorded. Fourths)r, when an airflow of maritime origin arrives low values of atmospheric CH4 are observed at TAP.

  • PDF

Application of Seasonal AERI Reference Spectrum for the Improvement of Cloud data Filtering Method (계절별 AERI 기준 스펙트럼 적용을 통한 구름에 영향을 받은 스펙트럼 자료 제거방법 개선)

  • Cho, Joon-Sik;Goo, Tae-Young;Shin, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.409-419
    • /
    • 2015
  • The Atmospheric Emitted Radiance Interferometer (AERI) which is the Fourier Transform InfraRed (FTIR) spectrometer has been operated by the National Institute of Meteorological Research (NIMR) in Anmyeon island, South Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of Cloud data Filtering Method (CFM) which employed only one reference spectrum of clear sky in winter season. This study suggests Seasonal-Cloud data Filtering Method (S-CFM) which applied seasonal AERI reference spectra. For the comparison of applied S-CFM and CFM, the methane retrievals (surface volume mixing ratio) from AERI spectra are used. The quality of AERI methane retrieval applied S-CFM was significantly more improved than that of CFM. The positive result of S-CFM is similar pattern with the seasonal variation of methane from ground-based in-situ measurement, even if the summer season's methane is retrieved over-estimation. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result except for the summer season.

Improvement of Cloud-data Filtering Method Using Spectrum of AERI (AERI 스펙트럼 분석을 통한 구름에 영향을 받은 스펙트럼 자료 제거 방법 개선)

  • Cho, Joon-Sik;Goo, Tae-Young;Shin, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.137-148
    • /
    • 2015
  • The National Institute of Meteorological Research (NIMR) has operated the Fourier Transform InfraRed (FTIR) spectrometer which is the Atmospheric Emitted Radiance Interferometer (AERI) in Anmyeon island, Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of retrieval quality from the AERI, particularly cloud-data filtering method. The AERI spectrum which is measured on a typical clear day is selected reference spectrum and we used region of atmospheric window. We performed test of threshold in order to select valid threshold. We retrieved methane using new method which is used reference spectrum, and the other method which is used KLAPS cloud cover information, each retrieved methane was compared with that of ground-based in-situ measurements. The quality of AERI methane retrievals of new method was significantly more improved than method of used KLAPS. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result.

Characteristics of Hydrogen and Carbon Production in Tubluar Reactor by Thermal Decomposition of Methane (Methane의 고온열분해에 의한 Tubluar reactor에서의 수소 및 탄소 생성 특성)

  • Lee, Byung Gwon;Lim, Jong Sung;Choi, Dae Ki;Park, Jeong Kun;Lee, Young Whan;Baek, Young Soon
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • This work was focused on the thermal decomposition of methane into hydrogen and carbon black without emitting carbon dioxide. Extensive experimental investigation on the thermal decomposition of methane has been carried out using a continuous flow reaction system with tubular reactor. The experiments were conducted at the atmospheric pressure condition in the wide range of temperature ($950-1150^{\circ}C$) and flow rate (250 - 1500 ml/min) in order to study their dependency on hydrogen yield. During the experiments the carbon black was successfully recovered as an useful product. Undesirable pyrocarbon was also formed as solid film, which was deposited on the inside surface of tubular reactor. The film of pyrocarbon in the reactor wall became thicker and thicker, finally blocking the reactor. The design of an efficient reactor which can effectively suppress the formation of pyrocarbon was thought to be one of the most important subjects in the thermal cracking of methane.