DOI QR코드

DOI QR Code

Improvement of Cloud-data Filtering Method Using Spectrum of AERI

AERI 스펙트럼 분석을 통한 구름에 영향을 받은 스펙트럼 자료 제거 방법 개선

  • Cho, Joon-Sik (Earth and Environment System Laboratory, National Institute of Meteorological Research) ;
  • Goo, Tae-Young (Earth and Environment System Laboratory, National Institute of Meteorological Research) ;
  • Shin, Jinho (Earth and Environment System Laboratory, National Institute of Meteorological Research)
  • 조준식 (국립기상연구소 지구환경시스템연구과) ;
  • 구태영 (국립기상연구소 지구환경시스템연구과) ;
  • 신진호 (국립기상연구소 지구환경시스템연구과)
  • Received : 2014.10.22
  • Accepted : 2015.04.21
  • Published : 2015.04.30

Abstract

The National Institute of Meteorological Research (NIMR) has operated the Fourier Transform InfraRed (FTIR) spectrometer which is the Atmospheric Emitted Radiance Interferometer (AERI) in Anmyeon island, Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of retrieval quality from the AERI, particularly cloud-data filtering method. The AERI spectrum which is measured on a typical clear day is selected reference spectrum and we used region of atmospheric window. We performed test of threshold in order to select valid threshold. We retrieved methane using new method which is used reference spectrum, and the other method which is used KLAPS cloud cover information, each retrieved methane was compared with that of ground-based in-situ measurements. The quality of AERI methane retrievals of new method was significantly more improved than method of used KLAPS. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result.

국립기상연구소는 2010년 6월, 하향적외스펙트럼을 관측하는 고분해적외분광간섭계(FT-IR)인 Atmospheric Emitted Radiance Interferometer (AERI)를 안면도 기후변화감시센터에 설치하였다. AERI는 고분해 적외 센서를 탑재하고 있어 위성 기반의 원격탐사 자료를 검증하는데 유효하다. 본 연구에서는 AERI로부터 산출되는 메탄의 품질 향상을 위해 맑을 때의 자료를 분류하는 AERI 스펙트럼 기준의 새로운 방법을 개발하였으며, KLAPS 구름 정보를 이용한 방법과 비교하였다. 맑은 날 관측된 AERI 스펙트럼을 기준 스펙트럼으로 선정하였으며, 구름에 민감한 대기 창 영역을 사용하였다. 임계값 선정을 위해 복사량 임계값 테스트를 실시하였으며, 선정된 임계값을 이용한 AERI 스펙트럼 기준의 방법과 KLAPS 구름 정보를 이용한 방법을 각각 이용하여 최하층 메탄 농도를 산출하였다. 각각 산출된 메탄농도와 지상관측 메탄농도를 비교하였으며, KLAPS 구름 정보를 이용하여 산출된 메탄농도보다 AERI 스펙트럼 기준의 방법으로 산출된 메탄농도의 품질이 더 좋은 것을 확인하였다. 뿐만 아니라 GOSAT 연직 메탄 총량과의 비교에서도 좋은 결과를 보여주었다.

Keywords

References

  1. KMA Global Atmosphere Watch Center, 2012. Report of Global Atmosphere Watch.
  2. Albers, S.C., J.A. McGinley, D.L. Birkenheuer, and J.R. Smart, 1996. The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature, Wea. Forecasting, 11: 273-287. https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2
  3. Aumann, H.H., M.T. Chahine, C. Gautier, M.D. Goldberg, E. Kalnay, L.M. McMillin, H. Revercomb, P.W. Rosenkranz, W.L. Smith, D.H. Staelin, L.L. Strow, and J. Susskind, 2003. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems, IEEE Trans. Geosci. Remote Sens, 41: 253-264. https://doi.org/10.1109/TGRS.2002.808356
  4. Clerbaux, C., A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes, and P.F. Coheur, 2009. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9: 6041-6054. https://doi.org/10.5194/acp-9-6041-2009
  5. Divakarla, M.G., C.D. Barnet, M.D. Goldberg, L.M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111: D09S15.
  6. Feltz, W.F., W.L. Smith, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, and, H.B. Howell, 1998. Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteor., 37: 857-875. https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2
  7. Feltz, W.F., D.D. Turner, H.B. Howell, W.L. Smith, R.O. Knuteson, H.M. Woolf, J. Comstock, C. Sivaraman, R. Mahon, and T. Halter, 2007. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description Revision 1, DOE ARM Technical Report, TR-066.
  8. Feltz, W.F., W.L. Smith, H.B. Howell, R.O. Knuteson, H. Woolf, and H.E. Revercomb, 2003. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI), Journal of Applied Meteorology, 42: 584-597. https://doi.org/10.1175/1520-0450(2003)042<0584:NPOTMA>2.0.CO;2
  9. George, M., C. Clerbaux, D. Hurtmans, S. Turquety, P.F. Coheur, M. Pommier, J. Hadji-Lazaro, D.P. Edwards, H. Worden, M. Luo, C. Rinsland, and W. McMillan, 2009. Carbon monoxide distribution from the IASI/METOP mission: evaluation with other space-borne remote sensors, Atmos. Chem. Phys., 9: 8317-8330. https://doi.org/10.5194/acp-9-8317-2009
  10. Ha, J.C., Y.H. Lee, J.S. Lee, H.C. Lee, and H.S. Lee, 2008. Development of short range analysis and prediction system, in Proc. of the 9th Weather Research and Forecasting Model Workshop, NCAR Mesoscale and Microscale Meteorology Division, Boulder, Colo, USA, Jun. 23-27.
  11. He, H., W.W. McMillan, R.O. Knuteson, and W.F. Feltz, 2001. Tropospheric carbon monoxide column density retrieval during the Pre-launch MOPITT Validation Exercise, Atmos. Environ., 35: 509-514. https://doi.org/10.1016/S1352-2310(00)00334-4
  12. Kang, S.H., T.Y. Goo, and M.L. Ou, 2013. Improvement of AERI T/q Retrievals and Their Validation at Anmyeon-Do, South Korea, J. Atmos. Oceanic Technol., 30: 1433-1446. https://doi.org/10.1175/JTECH-D-12-00029.1
  13. Knuteson, R.O., F.A. Best, D.H. DeSlover, B.J. Osborn, H.E. Revercomb, and W.L. Smither Sr., 2004a. Infrared land surface remote sensing using high spectral resolution aircraft observations, Adv. Space Res., 22: 1114-1119.
  14. Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and, D.C. Tobin, 2004b. Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design, J. Atmos. Oceanic Technol., 21: 1763-1776. https://doi.org/10.1175/JTECH-1662.1
  15. Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and D.C. Tobin, 2004c. Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance, J. Atmos. Oceanic Technol., 21: 1777-1789. https://doi.org/10.1175/JTECH-1663.1
  16. Liu, X., D.K. Zhou, A.M. Larar, W.L. Smith, P. Schluessel, S.M. Newman, J.P. Taylor, and W. Wu, 2009. Retrieval of atmospheric profiles and cloud properites from IASI spectra using superchannels, Atmos. Chem. Phys., 9: 9121-9142. https://doi.org/10.5194/acp-9-9121-2009
  17. Lee, H.Y. and B.H., Heo, 2013. Atmospheric Methane Characteristics in AMY, Korea, 2012. Asia-Pacific GAW Greenhouse Gases Newsletter, ISSN 2093-9590, 4: 1-5.
  18. Mariani, Z., K. Strong, M. Palm, R. Lindenmaier, C. Adams, X. Zhao, V. Savastiouk, C.T. McElroy, F. Goutail, and J.R. Drummond, 2013. Yearround retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer, Atmos. Meas. Tech., 6: 1549-1565. https://doi.org/10.5194/amt-6-1549-2013
  19. Mariani, Z., K. Strong, M. Wolff, P. Rowe, V. Walden, P.F. Fogal, T. Duck, G. Lesins, D.S. Turner, C. Cox, E. Eloranta, J.R. Drummond, C. Roy, D.D. Turner, D. Hudak, and I.A. Lindenmaier, 2012. Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers, Atmos. Meas. Tech., 5: 329-344. https://doi.org/10.5194/amt-5-329-2012
  20. Minnett, P.J., R.O. Knuteson, F.A. Best, B.J. Osborne, J.A. Hanafin, and O.B. Brown, 2001. The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared spectroradiometer, J. Atmos. Oceanic Technol., 18: 994-1013. https://doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2
  21. Pan, L., J.C. Gille, D.P. Edwards, P.L. Bailey, and C.D. Rodgers, 1998. Retrieval of tropospheric carbon monoxide for the MOPITT experiment, J. Geophys. Res., 103: 32277-32290. https://doi.org/10.1029/98JD01828
  22. Rinsland, C.P., N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, 1998. Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103: 28197-28218. https://doi.org/10.1029/98JD02515
  23. Smith, W.L., W.F. Feltz, R.O. Knuteson, H.E. Revercomb, H.M. Woolf and H.B. Howell, 1999. The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements. J. Atmos. Oceanic Technol., 16: 323-33. https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2
  24. Sokolik, I.N., O.B. Toon, and R.W. Bergstrom, 1998. Modeling the radiative characteristics of mineral aerosols at infrared wavelengths, J. Geophys. Res., 103: 8813-8826. https://doi.org/10.1029/98JD00049
  25. Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003. Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA, J. Appl. Meteor., 42: 701-715. https://doi.org/10.1175/1520-0450(2003)042<0701:CPDUGA>2.0.CO;2
  26. Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009. Global Concentrations of and Retrieved from GOSAT: First Preliminary Results, SOLA, 5: 160-163. https://doi.org/10.2151/sola.2009-041
  27. Yoshida, Y., Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, 2011. Retrieval algorithm for and column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4: 717-734. https://doi.org/10.5194/amt-4-717-2011

Cited by

  1. Application of Seasonal AERI Reference Spectrum for the Improvement of Cloud data Filtering Method vol.31, pp.5, 2015, https://doi.org/10.7780/kjrs.2015.31.5.5