• Title/Summary/Keyword: Atmospheric methane

Search Result 120, Processing Time 0.034 seconds

Methane Reforming Using Atmospheric Plasma Source (대기압 플라즈마를 이용한 메탄 개질 반응)

  • Lee, Dae-Hoon;Kim, Kwan-Tae;Cha, Min-Suk;Song, Young-Hoon;Kim, Dong-Hyeon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.64-68
    • /
    • 2005
  • Methane reforming processes to obtain hydrogen were investigated experimentally by using atmospheric plasma source. Among possible reforming processes, such as a $CO_2$ reforming(dry reforming), a partial oxidation (POx), a steam reforming(SR), and a steam reforming with oxygen(SRO or auto-thermal reforming), partial oxidation and the steam reforming with oxygen were considered. We choose a rotating arc plasma as an atmospheric plasma source, since it shows the best performances in our preliminary tests in terms of a methane conversion, a hydrogen production, and a power consumption. Then, the effects of a feeding flow-rate, an electrical power input to a plasma reaction, an $O_2/C$ ratio and a steam to carbon ratio in the case of SRO on the reforming characteristics were observed systematically. As results, at a certain condition almost 100% of methane conversion was obtained and we could achieve the same hydrogen production rate by consuming a half of electrical power which was used by the best results for other researchers.

  • PDF

Clarification of Methane Emission Sources Using WDCGG Data: Case Study of Anmyeon-do Observatory, Korea

  • Park, Soo-Young;Park, JongGeol;Kim, Chung-Sil;Shin, ImChul
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 2013
  • Methane concentrations have been monitored at the Anmyeon-do Observatory, Korea, since 1999. In recent years, the methane concentration has increased, but the sources of this increase have yet to be identified. This study was designed to identify the major source contributing to the increase by using World Data Centre for Greenhouse Gases (WDCGG) data and the Greenhouse Gases Emission Presumption (GEP) method. The data were collected at Anmyeon-do between 2003 and 2009 (except 2008), and the analyses showed that the increase in methane concentration originated mainly in rice paddies around the observation point. The annual average methane concentration at Anmyeon-do was 1894 ppb, of which 100-103 ppb (5.3-5.4%) was shown to originate mainly from rice paddies. The seasonal fluctuation in methane concentration from May to October estimated by the GEP method was compared with experimental data of previous research conducted on rice paddies. The close match obtained through this comparison shows that the GEP method is effective. The difference in methane concentration was also analyzed in terms of land use and land cover. It was shown that although rice paddies account for only 14.7% of the area surveyed, they accounted for between 69 and 90% of the total increase in methane concentration. These results confirm that rice paddies are the main source of the increase in methane concentration observed at Anmyeon-do.

A Study on the Effect of the Development of Anaerobic Respiration Processes in the Sediment with the Water-column Stratification and Hypoxia and Its Influence on Methane at Dangdong Bay in Jinhae, Korea (진해 당동만의 성층과 빈산소에 따른 퇴적물내 혐기층 발달이 메탄 거동에 미치는 영향 연구)

  • Kim, Seoyoung;An, Soonmo
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Hypoxia can affect water-atmosphere methane flux by controlling the production and consumption processes of methane in coastal areas. Seasonal methane concentration and fluxes were quantified to evaluate the effects of seasonal hypoxia in Dangdong Bay (Gyeongsangnamdo, Jinhae Bay, South Korea). Sediment-water methane flux increased more than 300 times during hypoxia (normoxia and hypoxia each 6, 1900 µmol m-2 d-1), and water-atmospheric methane flux and bottom methane concentration increased about 2, 10 times (normoxia and hypoxia each 190, 420 µmol m-2 d-1; normoxia and hypoxia each 22, 230 nM). Shoaling of anaerobic decomposition of organic matter in the sediments during the hypoxia (August) was confirmed by the change of the depth at which the maximum hydrogen sulfide concentration was detected. Shoaling shortens the distance between the water column and methanogenesis section to facilitate the inflow of organic matter, which can lead to an increase in methane production. In addition, since the transport distance of the generated methane to the water column is shortened, consumption of methane will be reduced. The combination of increased production and reduced consumption could increase sediment-aqueous methane flux and dissolved methane, which is thought to result in an increase in water-atmospheric methane flux. We could not observe the emission of methane accumulated during the hypoxia due to stratification, so it is possible that the estimated methane flux to the atmosphere was underestimated. In this study, the increase in methane flux in the coastal area due to hypoxia was confirmed, and the necessity of future methane production studies according to oxygen conditions in various coastal areas was demonstratedshown in the future.

Predicting the Methane Gas Generation Rate at Landfill Sites Using the Methane Gas Generation Rate Constant (k)

  • Chung, Jin-Do;Kim, Jung-Tae
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • In this study, the Tier 2 method recommended by the Intergovernmental Panel on Climate Change (IPCC) was used to predict the methane generation rate at two landfill sites, designated as Y and C for purposes of this study, in South Korea. Factors such as the average annual waste disposal, methane emissions ($L_0$) and methane gas generation rate constant (k) were estimated by analyses of waste and the historical data for the landfills. The value of k was estimated by field experiments and then the changes in the methane generation rate were predicted through the year 2050, based on the value of k. The Y landfill site, which was in operation until the year 2008, will generate a total of 17, 198.7 tons by the end of 2018, according to our estimations. At the C landfill site, which will not be closed until the end of 2011, the amount of methane gas generated in 2011 will be 3,316 tons and the total amount of gas generated by 2029 will be 61,200 tons. The total production rate of methane gas at the C landfill is higher than that of the Y landfill. This indicates that the capacity of a landfill site affects the production rate of methane gas. However, the interrelation between the generation rate of methane and the value of k is weak. In addition, the generation of methane gas does not cease even when the operations at a landfill site come to a close and the methane gas production rate is at its highest at end of the operating life of a landfill site.

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

The Analytical Bias of Total Hydrocarbon (THC) Measurements in Relation to the Selection of Standard Gas Compound (총탄화수소의 계측에서 표준시료성분의 선택에 따른 오차 발생 연구)

  • Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.449-452
    • /
    • 2010
  • In this article, the performance of the THC analyzer was inspected using two different span gases of methane ($CH_4$) and propane ($C_3H_8$). To explore the effect of standard gas selection, MicroFID system was tested by the following procedures. Initially, the system is spanned by propane gas of 60 ppm (or 180 ppmC). The system is then run against methane standards prepared at 5 different concentrations of 200, 250, 300, 400, and 500 ppm. According to the suggestion of the KMOE's test procedure to use multiplying a factor of 3 (for propane), the resulting THC values derived by methane standards were systematically biased with ~500% error relative to true value. This paper discusses the interpretation procedures to obtain the least biased THC values for a given span set-up.

Comparison of Greenhouse Gas Emission from Landfills by Different Scenarios (매립지의 온실가스 배출량 산정 시나리오에 따른 온실가스 배출량 비교)

  • Kim, Hyun-Sun;Choi, Eun-Hwa;Lee, Nam-Hoon;Lee, Seung-Hoon;Cheong, Jang-Pyo;Lee, Chae-Young;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.344-352
    • /
    • 2007
  • Quantifying the methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. To estimate methane emission for the entire landfills from 1990 through 2004 in Korea, Tier 1 and 2 methodologies were used. In addition, five different scenarios were adopted to identify the effect of important variables on methane emission. The trends of methane emission using Tier 1 were similar to the disposed waste amount. Methane emission using Tier 2 increased as the degradation of waste was gradually proceeded. This result indicates that disposed waste amount and methane generation rate are the important variables for the estimation of methane emission by Tier 1 and 2, respectively. As for the different scenarios, methane emission was highest with scenario I that the entire landfills in Korea were regarded as one landfill. Methane emissions by scenario III and IV considering different $DOC_F$ values with the waste type and different MCF values with the height of waste layer, respectively, were underestimated compared to scenario II. This result indicates that the method of scenario I employed to most previous studies may lead to the overestimation of methane emission. Therefore, more careful consideration of the variables should be needed to develop the methodologies of greenhouse gas emission in landfills along with the characteristics of disposed waste in Korea.

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.