DOI QR코드

DOI QR Code

A Study on the Effect of the Development of Anaerobic Respiration Processes in the Sediment with the Water-column Stratification and Hypoxia and Its Influence on Methane at Dangdong Bay in Jinhae, Korea

진해 당동만의 성층과 빈산소에 따른 퇴적물내 혐기층 발달이 메탄 거동에 미치는 영향 연구

  • Kim, Seoyoung (Department of Oceanography, College of Natural Sciences, Pusan National University) ;
  • An, Soonmo (Department of Oceanography, College of Natural Sciences, Pusan National University)
  • 김서영 (부산대학교 자연과학대학 해양학과) ;
  • 안순모 (부산대학교 자연과학대학 해양학과)
  • Received : 2022.01.24
  • Accepted : 2022.02.14
  • Published : 2022.03.30

Abstract

Hypoxia can affect water-atmosphere methane flux by controlling the production and consumption processes of methane in coastal areas. Seasonal methane concentration and fluxes were quantified to evaluate the effects of seasonal hypoxia in Dangdong Bay (Gyeongsangnamdo, Jinhae Bay, South Korea). Sediment-water methane flux increased more than 300 times during hypoxia (normoxia and hypoxia each 6, 1900 µmol m-2 d-1), and water-atmospheric methane flux and bottom methane concentration increased about 2, 10 times (normoxia and hypoxia each 190, 420 µmol m-2 d-1; normoxia and hypoxia each 22, 230 nM). Shoaling of anaerobic decomposition of organic matter in the sediments during the hypoxia (August) was confirmed by the change of the depth at which the maximum hydrogen sulfide concentration was detected. Shoaling shortens the distance between the water column and methanogenesis section to facilitate the inflow of organic matter, which can lead to an increase in methane production. In addition, since the transport distance of the generated methane to the water column is shortened, consumption of methane will be reduced. The combination of increased production and reduced consumption could increase sediment-aqueous methane flux and dissolved methane, which is thought to result in an increase in water-atmospheric methane flux. We could not observe the emission of methane accumulated during the hypoxia due to stratification, so it is possible that the estimated methane flux to the atmosphere was underestimated. In this study, the increase in methane flux in the coastal area due to hypoxia was confirmed, and the necessity of future methane production studies according to oxygen conditions in various coastal areas was demonstratedshown in the future.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

References

  1. Amouroux D, Roberts G, Rapsomanikis S, Andreae MO (2002) Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar Coast Shelf S 54(3):575-587 https://doi.org/10.1006/ecss.2000.0666
  2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54-62 https://doi.org/10.2118/942054-G
  3. Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cy 8(4):465-480 https://doi.org/10.1029/94GB02181
  4. Bange HW, Bergmann K, Hansen HP, Kock A, Koppe R, Malien F, Ostrau C (2010) Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernforde Bay, SW Baltic Sea). Biogeosciences 7:1279-1284 https://doi.org/10.5194/bg-7-1279-2010
  5. Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288(6):575-603 https://doi.org/10.2475/ajs.288.6.575
  6. Boynton WR, Kemp WM, Barnes JM, Cowan JLW, Stammerjohn SE, Matteson LL, Garber JH (1991) Long-term characteristics and trends of benthic oxygen and nutrient fluxes in the Maryland portion of Chesapeake Bay. In: Mihursky JA, Chaney A (eds) New perspectives in the chesapeake system: a research and management partnership. Chesapeake Research Concortium Publication, Charlottesville, pp 339-354
  7. Brady DC, Testa JM, Di Toro DM, Boynton WR, Kemp WM (2013) Sediment flux modeling: calibration and application for coastal systems. Estuar Coast Shelf S 117:107-124 https://doi.org/10.1016/j.ecss.2012.11.003
  8. Cai WJ, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52(2):123-131 https://doi.org/10.1016/0304-4203(95)00081-X
  9. Chanton JP, Martens CS, Goldhaber MB (1987) Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim Cosmochim Ac 51(5):1187-1199 https://doi.org/10.1016/0016-7037(87)90211-0
  10. Clark JF, Schlosser P, Simpson HJ, Stute M, Wanninkhof R, Ho DT (1995) Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: Jahne B, Monahan E (eds) Air-water gas transfer. AEON Verlag & Studio, Hanau, pp 785-800
  11. De Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers 1. Limnol Oceanogr 32(3):716-722 https://doi.org/10.4319/lo.1987.32.3.0716
  12. De Angelis MA, Scranton MI (1993) Fate of methane in the Hudson River and estuary. Global Biogeochem Cy 7(3):509-523 https://doi.org/10.1029/93GB01636
  13. Dean JF, Middelburg JJ, Rockmann T, Aerts R, Blauw LG, Egger M, Slomp CP (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56(1):207-250 https://doi.org/10.1002/2017rg000559
  14. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926-929 https://doi.org/10.1126/science.1156401
  15. Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Cagatay MN, Wenzhofer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4):1215-1259 https://doi.org/10.5194/bg-11-1215-2014
  16. Froelich P, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Ac 43(7):1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  17. Gelesh L, Marshall K, Boicourt W, Lapham L (2016) Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnol Oceanogr 61(S1):S253-S266 https://doi.org/10.1002/lno.10272
  18. Higashino M, Clark JJ, Stefan HG (2009) Pore water flow due to near-bed turbulence and associated solute transfer in a stream or lake sediment bed. Water Resour Res 45(12):12414
  19. Higashino M, Stefan HG (2011) Dissolved oxygen demand at the sediment-water interface of a stream: near-bed turbulence and pore water flow effects. J Environ Eng 137(7):531-540 https://doi.org/10.1061/(ASCE)EE.1943-7870.0000368
  20. Hwang CY, Cho BC (2005) Measurement of net photosynthetic rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. The Sea 10(1):31-37
  21. Jiang LQ, Cai WJ, Wang Y (2008) A comparative study of carbon dioxide degassing in river-and marine-dominated estuaries. Limnol Oceanogr 53(6):2603-2615 https://doi.org/10.4319/lo.2008.53.6.2603
  22. Jorgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) 1. Limnol Oceanogr 22(5):814-832 https://doi.org/10.4319/lo.1977.22.5.0814
  23. Kampbell DH, Vandegrift SA (1998) Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique. J Chromatogr Sci 36(5):253-256 https://doi.org/10.1093/chromsci/36.5.253
  24. Keeling RF, Kortzinger A, Gruber N (2009) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199-229 https://doi.org/10.1146/annurev.marine.010908.163855
  25. Kim SY, Lee YH, Kim YS, Shim JH, Ye MJ, Jeon JW, Jun SH (2012) Characteristics of marine environmental in the hypoxic season at Jinhae Bay in 2010. Kor J Nat Conserv 6(2):115-129 https://doi.org/10.11624/KJNC.2012.6.2.115
  26. Lee J, Kim SG, An S (2017) Dynamics of the physical and biogeochemical processes during hypoxia in Jinhae Bay, South Korea. J Coastal Res 33(4):854-863 https://doi.org/10.2112/JCOASTRES-D-16-00122.1
  27. Lee J, Park KT, Lim JH, Yoon JE, Kim IN (2018) Hypoxia in Korean coastal waters: a case study of the natural Jinhae Bay wand artificial Shihwa Bay. Front Mar Sci 5:70 https://doi.org/10.3389/fmars.2018.00070
  28. Lee JS, Kim KH, Yu J, Jung RH, Ko TS (2003). Estimation of oxygen consumption rate and organic carbon oxidation rate at the sediment/water interface of coastal sediments in the South Sea of Korea using an oxygen microsensor. The Sea 8(4):392-400
  29. Lichtschlag A, Donis D, Janssen F, Jessen GL, Holtappels M, Wenzhofer F, Boetius A (2015) Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences 12:5075-5092 https://doi.org/10.5194/bg-12-5075-2015
  30. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard (ed) The role of air-sea exchange in geochemical cycling. Springer, Dordrecht, pp 113-127
  31. Lukawska-Matuszewska K, Graca B, Broclawik O, Zalewska T (2019) The impact of declining oxygen conditions on pyrite accumulation in shelf sediments (Baltic Sea). Biogeochemistry 142(2):209-230 https://doi.org/10.1007/s10533-018-0530-2
  32. Luther GW, Giblin A, Howarth RW, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim Ac 46(12):2665-2669 https://doi.org/10.1016/0016-7037(82)90385-4
  33. Martens CS, Klump JV (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim Cosmochim Ac 48(10):1987-2004 https://doi.org/10.1016/0016-7037(84)90380-6
  34. Marvin-DiPasquale MC, Boynton WR, Capone DG (2003) Benthic sulfate reduction along the Chesapeake Bay central channel. II. Temporal controls. Mar Ecol-Prog Ser 260:55-70 https://doi.org/10.3354/meps260055
  35. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences Discuss 6(2):1273-1293 https://doi.org/10.5194/bg-6-1273-2009
  36. Middelburg JJ, Nieuwenhuize J, Iversen N, Hogh N, De Wilde H, Helder W, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59(1-2):95-119 https://doi.org/10.1023/A:1015515130419
  37. Moeslundi L, Thamdrup B, Jorgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27(2):129-152 https://doi.org/10.1007/BF00002815
  38. Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343(6170):493-495 https://doi.org/10.1126/science.1247828
  39. Pamatmat MM (1971) Oxygen consumption by the seabed IV. Shipboard and laboratory experiments. Limnol Oceanogr 16(3):536-550 https://doi.org/10.4319/lo.1971.16.3.0536
  40. Park YP, Cha J, Song B, Huang Y, Kim S, Kim S, Jo E, Fortin S, Am S (2020) Total microbial activity and sulfur cycling microbe changes in response to the development of hypoxia in a shallow estuary. Ocean Sci J 55(1):165-181 https://doi.org/10.1007/s12601-020-0011-0
  41. Rabalais NN, Turner RE, Wiseman WJ, Boesch DF (1991) A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985-1988. Geol Soc 58(1):35-47 https://doi.org/10.1144/GSL.SP.1991.058.01.03
  42. Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1(1):1-2 https://doi.org/10.7185/geochempersp.1.1
  43. Rasmussen H, Jorgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol-Prog Ser 81(3):289-303 https://doi.org/10.3354/meps081289
  44. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486-513 https://doi.org/10.1021/cr050362v
  45. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61(3):261-293 https://doi.org/10.1023/B:CLIM.0000004577.17928.fa
  46. Ryu J, AN S (2016) Seasonal variation of dissolved methane concentration and flux in the Nakdong Estuary. The Sea 21(3):91-102 https://doi.org/10.7850/JKSO.2016.21.3.91
  47. Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cy 13(2):463-474 https://doi.org/10.1029/1999GB900012
  48. Sansone FJ, Rust TM, Smith SV (1998) Methane distribution and cycling in Tomales Bay, California. Estuaries 21(1):66-77 https://doi.org/10.2307/1352547
  49. Seitaj D, Sulu-Gambari F, Burdorf LD, Romero-Ramirez A, Maire O, Malkin SY, Meysman FJ (2017) Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnol Oceanogr 62(2):452-473 https://doi.org/10.1002/lno.10434
  50. Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115(4):451-460 https://doi.org/10.1007/BF02702873
  51. Shin SH, Jo JG, Kim YJ, Jang SY (2015) Variation of benthic environments and macrobenthic communities in hypoxic waters of Jinhae Bay, 2015. Kor Soc Mar Environ Energ 18(3):179-188 https://doi.org/10.7846/JKOSMEE.2015.18.3.179
  52. Soetaer K, Herman PM, Middelburg JJ (1996) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41(8):1651-1668 https://doi.org/10.4319/lo.1996.41.8.1651
  53. Steinberger N, Hondzo M (1999) Diffusional mass transfer at sediment-water interface. J Environ Eng 125(2):192-200 https://doi.org/10.1061/(ASCE)0733-9372(1999)125:2(192)
  54. Steinle L, Maltby J, Treude T, Kock A, Bange HW, Engbersen N, Niemann H (2017) Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences 14:1631-1645 https://doi.org/10.5194/bg-14-1631-2017
  55. Thamdrup B, Fossing H, Jorgensen BB (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Ac 58(23):5115-5129 https://doi.org/10.1016/0016-7037(94)90298-4
  56. Torres-Alvarado R, Ramirez-Vives F, Fernandez FJ, Barriga-Sosa I (2005) Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle. Hidrobiologica 15(3):327-349
  57. Turner RE, Rabalais NN, Justic D (2006) Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar Pollut Bull 52(2):139-148 https://doi.org/10.1016/j.marpolbul.2005.08.012
  58. Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments 1. Limnol Oceanogr 27(3):552-556 https://doi.org/10.4319/lo.1982.27.3.0552
  59. Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJ (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cy 14(4):1205-1217 https://doi.org/10.1029/1999gb001236
  60. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res-Oceans 97(C5):7373-7382 https://doi.org/10.1029/92JC00188
  61. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr 12(6):351-362 https://doi.org/10.4319/lom.2014.12.351
  62. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21(1):78-80 https://doi.org/10.1021/je60068a029
  63. Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F. (2008). Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91(1):71-84 https://doi.org/10.1007/s10533-008-9259-7