• Title/Summary/Keyword: Atmospheric level

Search Result 992, Processing Time 0.035 seconds

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF

An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze (광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석)

  • Kim, Hak-Sung;Chung, Yong-Seung;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.434-447
    • /
    • 2016
  • This study analyzed mass concentrations of PM10 and PM2.5, as measured at Tae-ahn and Gang-nae, Cheongju in central Korea over the period from 2011 to 2015. Higher mass concentrations of PM10, with the exception of dustfall cases during the period of winter and spring, reflected the influence of a prevailing westerly airflow, while the level of PM10 stayed at a low level in summer, reflecting the influence of North Pacific air mass and frequent rainfall. Accordingly, cases where a daily PM10 average of $81{\mu}gm^{-3}$ or over (exceeding the status of fine dust particles being 'a little bit bad') were often observed during the period of winter and spring, with more cases occurring in parts of Tae-ahn that are located close to the sources of pollutant emission in eastern China. Dustfall usually originated from dust storms made up of particles $2.5{\mu}m$ or over in diameter. However, anthropogenic haze displayed a high composition ratio of particulate less than $2.5{\mu}m$ in diameter. Accordingly, brightness temperature difference (BTD) values from the Communication, Ocean and Meteorological Satellite (COMS) were $-0.5^{\circ}K$ or over in haze with fine particulate. PM10 mass concentrations and NOAA 19 satellite BTD for haze cases were analyzed. Though PM10 mass concentrations were found to be lower than $200{\mu}g\;m^{-3}$, the mass concentration ratio of PM2.5/PM10 was measured as higher than 0.4 and BTD was found to be distributed in the range from -0.3 to $0.5^{\circ}K$. However, the BTD of dustfall cases exceeding $190{\mu}g\;m^{-3}$, were found to be less than 0.4 and BTD was found to be distributed in the range less than $-0.7^{\circ}K$. The result of applying BTD threshold values of the large-scale transport of haze proved to fall into line with the range over which aerosols of MODIS AOD and OMI AI were distributed.

Dissolved Copper and Nickel in the surface water of East Sea, Korea (동해 표층수중 용존 Cu, Ni의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong;Suh, Young Sang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.257-267
    • /
    • 2014
  • The distributions of trace metals in the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 25 surface water samples. The total dissolved concentrations of Cu and Ni were measured using ICP-MS, DRC-e. In the coastal area, their concentrations of Russia shore (Cu, 1.51; Ni, 1.82 nM) were 1.9 times for Cu and 2.0 times for Ni lower than Korea shore (Cu, 2.87; Ni, 3.71 nM). In the subregion, their concentrations of Warm region (Cu, 3.03; Ni, 2.28 nM) were higher for Cu than Cold region (Cu, 2.04; Ni, 2.28 nM). The distributions of Cu and Ni concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. In this study period, the surface water temperatures of Russia shore and Japan basin were lower than $10^{\circ}C$ and them of Ulleung basin and Sakhalin shore were higher. Below $10^{\circ}C$, Cu and Ni concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current. By comparing with other sea areas (Western Mediterranean, Atlantic), Cu concentrations in the East Sea were a little higher and Ni concentrations were lower. Particularly as the level of Cu in the offshore in the Ulleung basin were higher than in the coastal area, We can suggest that the atmospheric flux of Cu is relatively important in this area.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Distributions of Dissolved Pb and Cd in the Surface Water of East Sea, Korea (동해 표층수중 용존 Pb, Cd의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • The distributions of Pb and Cd concentrations in the surface seawater of the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 26 surface water samples. The total dissolved concentrations of Pb and Cd were measured using ICP-MS (Perkin Elmer, DRC-e). In the coastal area, their concentrations of Russia shore (Pb, 0.08; Cd, 0.10 nM) were comparable for Cd but on the other hand, 6 times lower for Pb than Korea shore (Pb, 0.49; Cd, 0.11 nM). In the subregion, their concentrations of Warm region (Pb, 0.22; Cd, 0.01 nM) were about 1.7 times higher for Pb but 0.4 lower for Cd than Cold region (Pb, 0.13; Cd, 0.14 nM). The distributions of Pb and Cd concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. Below $10^{\circ}C$, Pb and Cd concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current and neighboring countrys (Korea and Japan). Specially, in the case of Pb, the concentrations decrease remarkablely with temperatures decrease from D10 directly influenced by flux from East Korean Warm Current, which shows highest Pb level. By comparing with other sea areas (Western Mediterranean, East Pacific), Pb concentrations in the East Sea were a little higher. The influence of East Korean Warm Current and neighboring countrys (Korea and Japan) may be relatively important. Therefore, the distribution of Cd may primarily be influenced by mixing of different water masses while the distribution of Pb may mainly be influenced by flux from East Korean Warm Current and atmospheric inputs. River inputs and interaction with particulate materials may also some roles for the distribution of these elements.

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

The Impacts of Need for Cognitive Closure, Psychological Wellbeing, and Social Factors on Impulse Purchasing (인지폐합수요(认知闭合需要), 심리건강화사회인소대충동구매적영향(心理健康和社会因素对冲动购买的影响))

  • Lee, Myong-Han;Schellhase, Ralf;Koo, Dong-Mo;Lee, Mi-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.44-56
    • /
    • 2009
  • Impulse purchasing is defined as an immediate purchase with no pre-shopping intentions. Previous studies of impulse buying have focused primarily on factors linked to marketing mix variables, situational factors, and consumer demographics and traits. In previous studies, marketing mix variables such as product category, product type, and atmospheric factors including advertising, coupons, sales events, promotional stimuli at the point of sale, and media format have been used to evaluate product information. Some authors have also focused on situational factors surrounding the consumer. Factors such as the availability of credit card usage, time available, transportability of the products, and the presence and number of shopping companions were found to have a positive impact on impulse buying and/or impulse tendency. Research has also been conducted to evaluate the effects of individual characteristics such as the age, gender, and educational level of the consumer, as well as perceived crowding, stimulation, and the need for touch, on impulse purchasing. In summary, previous studies have found that all products can be purchased impulsively (Vohs and Faber, 2007), that situational factors affect and/or at least facilitate impulse purchasing behavior, and that various individual traits are closely linked to impulse buying. The recent introduction of new distribution channels such as home shopping channels, discount stores, and Internet stores that are open 24 hours a day increases the probability of impulse purchasing. However, previous literature has focused predominantly on situational and marketing variables and thus studies that consider critical consumer characteristics are still lacking. To fill this gap in the literature, the present study builds on this third tradition of research and focuses on individual trait variables, which have rarely been studied. More specifically, the current study investigates whether impulse buying tendency has a positive impact on impulse buying behavior, and evaluates how consumer characteristics such as the need for cognitive closure (NFCC), psychological wellbeing, and susceptibility to interpersonal influences affect the tendency of consumers towards impulse buying. The survey results reveal that while consumer affective impulsivity has a strong positive impact on impulse buying behavior, cognitive impulsivity has no impact on impulse buying behavior. Furthermore, affective impulse buying tendency is driven by sub-components of NFCC such as decisiveness and discomfort with ambiguity, psychological wellbeing constructs such as environmental control and purpose in life, and by normative and informational influences. In addition, cognitive impulse tendency is driven by sub-components of NFCC such as decisiveness, discomfort with ambiguity, and close-mindedness, and the psychological wellbeing constructs of environmental control, as well as normative and informational influences. The present study has significant theoretical implications. First, affective impulsivity has a strong impact on impulse purchase behavior. Previous studies based on affectivity and flow theories proposed that low to moderate levels of impulsivity are driven by reduced self-control or a failure of self-regulatory mechanisms. The present study confirms the above proposition. Second, the present study also contributes to the literature by confirming that impulse buying tendency can be viewed as a two-dimensional concept with both affective and cognitive dimensions, and illustrates that impulse purchase behavior is explained mainly by affective impulsivity, not by cognitive impulsivity. Third, the current study accommodates new constructs such as psychological wellbeing and NFCC as potential influencing factors in the research model, thereby contributing to the existing literature. Fourth, by incorporating multi-dimensional concepts such as psychological wellbeing and NFCC, more diverse aspects of consumer information processing can be evaluated. Fifth, the current study also extends the existing literature by confirming the two competing routes of normative and informational influences. Normative influence occurs when individuals conform to the expectations of others or to enhance his/her self-image. Whereas informational influence occurs when individuals search for information from knowledgeable others or making inferences based upon observations of the behavior of others. The present study shows that these two competing routes of social influence can be attributed to different sources of influence power. The current study also has many practical implications. First, it suggests that people with affective impulsivity may be primary targets to whom companies should pay closer attention. Cultivating a more amenable and mood-elevating shopping environment will appeal to this segment. Second, the present results demonstrate that NFCC is closely related to the cognitive dimension of impulsivity. These people are driven by careless thoughts, not by feelings or excitement. Rational advertising at the point of purchase will attract these customers. Third, people susceptible to normative influences are another potential target market. Retailers and manufacturers could appeal to this segment by advertising their products and/or services as products that can be used to identify with or conform to the expectations of others in the aspiration group. However, retailers should avoid targeting people susceptible to informational influences as a segment market. These people are engaged in an extensive information search relevant to their purchase, and therefore more elaborate, long-term rational advertising messages, which can be internalized into these consumers' thought processes, will appeal to this segment. The current findings should be interpreted with caution for several reasons. The study used a small convenience sample, and only investigated behavior in two dimensions. Accordingly, future studies should incorporate a sample with more diverse characteristics and measure different aspects of behavior. Future studies should also investigate personality traits closely related to affectivity theories. Trait variables such as sensory curiosity, interpersonal curiosity, and atmospheric responsiveness are interesting areas for future investigation.

  • PDF

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals - (대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Lee, Jun-Jung;Oh, In-Bo;Shon, Byung-Hyun;Lee, Hyung-Don;Yoon, Mi-Ra;Kim, Geun-Bae;Yu, Seung-do;Min, Young-Sun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.