DOI QR코드

DOI QR Code

An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze

광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석

  • Kim, Hak-Sung (Department of Earth Science Education, Korean National University of Education) ;
  • Chung, Yong-Seung (Korea Centre for Atmospheric Environment Research) ;
  • Cho, Jae-Hee (Department of Earth Science Education, Korean National University of Education)
  • 김학성 (한국교원대학교 지구과학교육과) ;
  • 정용승 (고려대기환경연구소) ;
  • 조재희 (한국교원대학교 지구과학교육과)
  • Received : 2016.12.06
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

This study analyzed mass concentrations of PM10 and PM2.5, as measured at Tae-ahn and Gang-nae, Cheongju in central Korea over the period from 2011 to 2015. Higher mass concentrations of PM10, with the exception of dustfall cases during the period of winter and spring, reflected the influence of a prevailing westerly airflow, while the level of PM10 stayed at a low level in summer, reflecting the influence of North Pacific air mass and frequent rainfall. Accordingly, cases where a daily PM10 average of $81{\mu}gm^{-3}$ or over (exceeding the status of fine dust particles being 'a little bit bad') were often observed during the period of winter and spring, with more cases occurring in parts of Tae-ahn that are located close to the sources of pollutant emission in eastern China. Dustfall usually originated from dust storms made up of particles $2.5{\mu}m$ or over in diameter. However, anthropogenic haze displayed a high composition ratio of particulate less than $2.5{\mu}m$ in diameter. Accordingly, brightness temperature difference (BTD) values from the Communication, Ocean and Meteorological Satellite (COMS) were $-0.5^{\circ}K$ or over in haze with fine particulate. PM10 mass concentrations and NOAA 19 satellite BTD for haze cases were analyzed. Though PM10 mass concentrations were found to be lower than $200{\mu}g\;m^{-3}$, the mass concentration ratio of PM2.5/PM10 was measured as higher than 0.4 and BTD was found to be distributed in the range from -0.3 to $0.5^{\circ}K$. However, the BTD of dustfall cases exceeding $190{\mu}g\;m^{-3}$, were found to be less than 0.4 and BTD was found to be distributed in the range less than $-0.7^{\circ}K$. The result of applying BTD threshold values of the large-scale transport of haze proved to fall into line with the range over which aerosols of MODIS AOD and OMI AI were distributed.

2011-2015년 동안 한국 중부 태안과 청주 강내의 배경 관측지점에서 측정한 PM10, PM2.5 질량 농도를 분석하였다. 황사 사례를 제외한 PM10 질량 농도의 계절변동에서 겨울-봄 동안 높은 농도는 서풍 기류에 의한 영향이 반영되고 있으며, 여름에는 북태평양 기단과 잦은 강수로 낮은 수준을 보이고 있었다. 따라서, 일평균 PM10 질량 농도 $81{\mu}gm^{-3}$ (미세먼지 예보 '약간 나쁨' 이상) 이상의 사례도 겨울-봄 동안에 발생이 많으며, 특히 중국 동부 배출원에 가까운 태안에서 더 많은 사례가 발생하고 있었다. 인위적으로 발생한 연무는 입경 $2.5{\mu}m$ 미만 입자의 구성 비율이 높다. 천리안 위성의 밝기온도차 분석에서 대기와 입자가 작은 연무는 $-0.5^{\circ}K$ 이상에서 관측된다. 2011-2015년 동안 태안과 청주 강내에서 관측한 연무 사례일의 PM10 질량 농도와 NOAA 19 위성 밝기온도차를 분석하였다. PM10 질량 농도는 $200{\mu}g\;m^{-3}$ 보다 낮지만, PM2.5/PM10 질량 농도비는 0.4보다 높고 밝기온도차는 $-0.3-0.5^{\circ}K$ 범위에 분포하고 있었다. 그러나, PM10 질량 농도 $190{\mu}g\;m^{-3}$ 이상인 황사 사례의 밝기온도차는 PM2.5/PM10 질량 농도비가 0.4보다 낮고, 밝기온도차는 $-0.7^{\circ}K$ 이하의 범위에 분포하고 있었다. 이러한 연무의 밝기온도차 경계값 범위를 적용한 결과는 MODIS AOD, OMI AI의 에어로졸 분포 범위와 일치하였다.

Keywords

References

  1. Chung, Y.S. and Le, H.V., 1984, Detection of forest-fire smoke plumes by satellite image. Atmospheric Environment, 18, 2143-2151. https://doi.org/10.1016/0004-6981(84)90201-4
  2. Gu, Y., Rose, W.I., and Bluth, G.J.S., 2003, Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands. A case study of April 7, 2001 sandstorm in China. Geophysical Research Letters, 30, doi.10.1029/2003GL017405.
  3. Ha, J.S., Kim, J.H., and Lee, H.J., 2006, Sensitivity analysis of IR aerosol detection algorithm. Korean Journal of Remote Sensing, 22, 507-518. https://doi.org/10.7780/kjrs.2006.22.6.507
  4. Kim, H.S. and Chung, Y.S., 2007, Large-scale transport of air pollutants in the East Asian region: Satellite and ground observations. Journal of Korean Earth Science Society, 28, 123-135. https://doi.org/10.5467/JKESS.2007.28.1.123
  5. Kim, H.S., Chung, Y.S., and Choi, H.J., 2014, On air pollutant variations in the cases of long-range transport of dust particles observed in central Korea in the leeside of China in 2010. Air Quality, Atmosphere and Health, 7, 309-323. https://doi.org/10.1007/s11869-014-0238-y
  6. Kim, H.S., Chung, Y.S., and Yoon, M.B., 2016, An analysis on the impact of large-scale transports of dust pollution on air quality in East Asia as observed in central Korea in 2014. Air Quality, Atmosphere and Health, 9, 83-93. https://doi.org/10.1007/s11869-014-0312-5
  7. Kim, M.Y., Cho, S.J., Kim, K.R., and Lee, M.H., 2003, The behaviour of dust concentrations during sand storm in Seoul Area. Journal of Korean Earth Science Society, 24, 315-324.
  8. Korea Energy Economics Institute, 2012, Yearbook of Energy Statistics. 31, 339 pp.
  9. Korea Meteorological Administration, 2009, Development of meteorological data processing system for communication, ocean and meteorological satellite. 846 pp.
  10. Kurosaki, Y. and Mikami, M., 2003, Recent frequent dust events and their relation to surface wind in East Asia. Geophysical Research Letters, 30, doi:10.1029/2003GL017261.
  11. Lu, X.Y., Tang, J., Zhang, J., Yue, J., Song, G.K., and Hu, J.G., 2013, Annual report on analysis of Beijing societybuilding. Social Science Academic Press, Beijing, China.
  12. Moon, Y.S., Lim, Y.K., and Lee, K.Y., 2011, An estimation of concentration of Asian dust (PM10) using WRFSMOKE-CMAQ (MADRID) during springtime in the Korean Peninsula. Journal of Korean Earth Science Society, 32, 276-293. https://doi.org/10.5467/JKESS.2011.32.3.276
  13. Prata, A.J., 1989, Observations of volcanic ash clouds in the 10-12 window using AVHRR/2 data. Interational Journal of Remote Sensing, 10, 751-761. https://doi.org/10.1080/01431168908903916
  14. Rolph, G.D., 2016, Real-time Environmental Applications and Display sYstem (READY) Website (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park, MD.
  15. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., 2015, NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of American Meteorological Society, 96, 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  16. Wang, W. and Fang, Z.Y., 2006, Numerical simulation and synoptic analysis of dust emission and transport in East Asia. Globbal Planet Change, 52, 57-70. https://doi.org/10.1016/j.gloplacha.2006.02.004
  17. Wen, S. and Rose, W.I., 1994, Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. Journal of Geophysical Research, 99, 5421-5431. https://doi.org/10.1029/93JD03340
  18. Zhao, Y., Wang, S., Duan, L., Lei, Y., Cao, P., and Hao, J., 2008, Primary air pollutants emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment, 42, 8442-8452. https://doi.org/10.1016/j.atmosenv.2008.08.021