• Title/Summary/Keyword: Atmospheric environment impact assessment

Search Result 63, Processing Time 0.027 seconds

Evaluation of the Usability of Micro-Sensors for the Portable Fine Particle Measurement (생활 속 미세먼지 영향평가를 위한 소형센서의 신뢰성 및 활용성 평가)

  • Kim, Jinsu;Jang, Youjung;Kim, Jinseok;Park, Minwoo;Bu, Chanjong;Lee, Yungu;Kim, Younha;Woo, Jung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.378-393
    • /
    • 2018
  • As atmospheric fine dust problems in Korea become more serious, there are growing needs to find the concentration of fine particles in indoor and outdoor areas and there are increasing demands for sensor-based portable monitoring devices capable of measuring fine dust concentrations instantly. The low-cost portable monitoring devices have been widely manufactured and used without the prescribed certification standards which would cause unnecessary confusion to the concerned public. To evaluate the reliability those devices and to improve their usability, following studies were conducted in this work; 1) The comparisons between sensor-based devices and comparison with more accurate devices were performed. 2) Several experiments were conducted to understand usefulness of the portable monitoring devices. As results, the absolute concentration levels need to be adjusted due to insensitivity of the tiny light scattering sensors in the portable devices, but their linearity and reproducibility seem to be acceptable. By using those monitoring devices, users are expected to have benefits of recognizing the changes of concentration more quickly and could help preventing themselves from the adverse health impacts.

Measurement of Environmental Tobacco Smoke in the Air of Offices in Urban Areas - Focusing on the Impact of Smoking on the Concentrations of Suspended Particles - (도시지역 사무실내 공기 중 환경담배연기의 측정 - 흡연이 부유먼지 농도에 미치는 영향을 중심으로 -)

  • Baek Sung-Ok;Park Sang-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.715-727
    • /
    • 2004
  • This study was carried out to evaluate non-smoker's exposure levels to environmental tobacco smoke (ETS) in the air of offices in urban areas. A total of 65 offices were selected from two large cities, i.e. Daegu and Daejeon. The field sampling was conducted repeatedly in summer (1999) and winter (1999~2000). The measured ETS markers included respirable suspended particles (RSP as PM$_{40}$ ), vapor and particulate phase ETS markers, including nicotine, 3-ethnyl pyridine (3-EP), ultraviolet absorbing particulate matter (UVPM), fluorescing particulate matter (FPM), and solanseol in ETS particles (SolPM). RSP was measured gravimetrically by a microbalance. The particle samples were then used for the determination of particulate ETS markers by HPLC, while vapor phase markers determined by GC/NPD. The analytical methods were validated for repeatability, linearity, detection limits, and duplication precision. The concentrations of RSP and other ETS markers were significantly higher in smoking offices than non-smoking offices. Despite the similar smoking strength in each office for different seasons, the concentration levels of ETS components appeared to be higher in winter than summer. The contributions of ETS to RSP concentrations based on SolPM, FPM, and UVPM methods were estimated to be in the range of 15.2 ~ 25.3% in smoking offices, whereas 2.4 ~ 15.9% in non-smoking offices. The cooling and heating types did not affect significantly the concentrations of RSP and other ETS markers. Finally, further research issues were suggested to obtain more scientific information on the non-smoker's exposure to ETS with respect to the frame of risk assessment..

Impact Assessment of Remodeling Works on Indoor Air Quality in a University Library Building (대학 도서관 건물 리모델링에 따른 실내공기질 영향 평가)

  • Baek, Sung-Ok;Park, Dae-Gwon;Park, Sun-Young;Lee, Yeo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.876-887
    • /
    • 2006
  • Recently, there have been a large number of remodeling (or renovation) works in old buildings in urban areas. Compared to new buildings, environmental risk might be more significant in such buildings where remodeling works are going on, since some parts of the building may still be in service for people. This study was carried out to investigate the impacts of remodeling works on the indoor air quality (IAQ) of a large building (a 22 stories university library). Indoor air monitoring was conducted during and after the remodeling works every two weeks for a one year period, and target compounds included BTEX, styrene, TVOC, carbonyl compounds such as formaldehyde and acetaldehyde. $CO,\;CO_2,\;PM_{10}$, and $PM_{2.5}$. Overall, the IAQ appeared to be recovered within two months after the remodeling works. However, in some places, concentrations of formaldehyde, toluene, xylene. and ethylbenzene showed higher levels even after works than those during the works. The results indicate that painting, glues and office furnitures are major sources of aromatic VOCs and formaldehyde. Therefore, in order to decrease the concentrations of toxic VOCs, the use of environmental-friendly building materials is strongly recommended during the remodeling works. In addition, IAQ control and management scheme (for example, baking the inside of the building) should be taken into consideration before reopening the buildings.

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.

Assessment of Global Air Quality Reanalysis and Its Impact as Chemical Boundary Conditions for a Local PM Modeling System (전지구 대기질 재분석 자료의 평가와 국지규모 미세먼지 예보모델에 미치는 영향)

  • Lee, Kangyeol;Lee, Soon-Hwan;Kim, EunJi
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1029-1042
    • /
    • 2016
  • The initial and boundary conditions are important factors in regional chemical transport modeling systems. The method of generating the chemical boundary conditions for regional air quality models tends to be different from the dynamically varying boundary conditions in global chemical transport models. In this study, the impact of real time Copernicus atmosphere monitoring service (CAMS) re-analysis data from the modeling atmospheric composition and climate project interim implementation (MACC) on the regional air quality in the Korean Peninsula was carried out using the community multi-scale air quality modeling system (CMAQ). A comparison between conventional global data and CAMS for numerical assessments was also conducted. Although the horizontal resolution of the CAMS re-analysis data is not higher than the conventionally provided data, the simulated particulate matter (PM) concentrations with boundary conditions for CAMS re-analysis is more reasonable than any other data, and the estimation accuracy over the entire Korean peninsula, including the Seoul and Daegu metropolitan areas, was improved. Although an inland area such as the Daegu metropolitan area often has large uncertainty in PM prediction, the level of improvement in the prediction for the Daegu metropolitan area is higher than in the coastal area of the western part of the Korean peninsula.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Development of Korean SPAR(Soil-Plant-Atmosphere-Research) System for Impact Assessment of Climate Changes and Environmental Stress (기후변화 및 환경스트레스 영향평가를 위한 한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템의 개발)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • The needs for precise diagnostics and farm management-decision aids have increased to reduce the risk of climate change and environmental stress. Crop simulation models have been widely used to search optimal solutions for effective cultural practices. However, limited knowledge on physiological responses to environmental variation would make it challenging to apply crop simulation models to a wide range of studies. Advanced research facilities would help investigation of plant response to the environment. In the present study, the sunlit controlled environment chambers, known as Korean SPAR (Soil-Plant-Atmosphere-Research) system, was developed by renovating existing SPAR system. The Korean SPAR system controls and monitors major environmental variables including atmospheric carbon dioxide concentration, temperature and soil moisture. Furthermore, plants are allowed to grow under natural sunlight. Key physiological and physical data such as canopy photosynthesis and respiration, canopy water and nutrient use over the whole growth period are also collected automatically. As a case study, it was shown that the Korean SPAR system would be useful for collection of data needed for understanding the growth and developmental processes of a crop, e.g., soybean. In addition, we have demonstrated that the canopy photosynthetic data of the Korean SPAR indicate the precise representation of physiological responses to environment variation. As a result, physical and physiological data obtained from the Korean SPAR are expected to be useful for development of an advanced crop simulation model minimizing errors and confounding factors that usually occur in field experiments.