Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT

SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가

  • Ye, Lyeong (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se-Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Heung-Soo (Department of Environmental Engineering, Chungbuk National University) ;
  • Yoon, Sung-Wan (Department of Environmental Engineering, Chungbuk National University) ;
  • Jeong, Hee-Young (Department of Environmental Engineering, Chungbuk National University)
  • 예령 (충북대학교 환경공학과) ;
  • 정세웅 (충북대학교 환경공학과) ;
  • 이흥수 (충북대학교 환경공학과) ;
  • 윤성완 (충북대학교 환경공학과) ;
  • 정희영 (충북대학교 환경공학과)
  • Received : 2008.06.30
  • Accepted : 2008.10.14
  • Published : 2009.01.30

Abstract

Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Keywords

References

  1. 김병식, 김형수, 서병하, 김남원(2004). 기후변화가 용담댐 유역의 유출에 미치는 영향. 한국수자원학회논문집, 37(2), pp. 185-193 https://doi.org/10.3741/JKWRA.2004.37.3.185
  2. 김철겸, 김남원(2004). 산림식생에 따른 유역 물수지 평가. 한국수자원학회논문집, 37(9), pp. 737-744 https://doi.org/10.3741/JKWRA.2004.37.9.737
  3. 김태순, 정일원, 구보영, 배덕효(2007). 다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(Ⅰ): 방법론과 모형구축. 한국수자원학회논문집, 40(9), pp. 677-685
  4. 박종윤, 이미선, 이용준, 김성준(2008). SWAT 모형을 이용한 미래 토지이용변화가 수문-수질에 미치는 영향 분석. 대한토목공학회논문집, 28(2B), pp. 187-197
  5. 배덕효, 정일원, 권원태(2007a). 수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅰ). 한국수자원학회논문집, 40(3), pp. 191-204 https://doi.org/10.3741/JKWRA.2007.40.3.191
  6. 배덕효, 정일원, 권원태(2007b). 수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(Ⅱ). 한국수자원학회논문집, 40(3), pp. 205-214 https://doi.org/10.3741/JKWRA.2007.40.3.205
  7. 신사철(2000). 기후변화 시나리오에 의한 하천 유황의 해석. 한국수자원학회논문집, 33(5), pp. 623-634
  8. 안재현, 유철상, 윤용남(2001). GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석. 한국수자원학회논문집, 34(4), pp. 335-345
  9. 예 령, 윤성완, 정세웅(2008). 대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용. 한국수자원학회논문집, 41(2), pp. 149-162 https://doi.org/10.3741/JKWRA.2008.41.2.149
  10. 정세웅, 박재호, 윤성완, 배정옥(2005). 대청호 유입 탁수의 수리 및 수질특성. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 375-378
  11. 한국수자원공사(2001-2004). 대청댐 일원 수문기초조사 보고서
  12. 황준식, 정대일, 이재경, 김영오(2007). 기후변화 영향평가를 위한 월 물수지모형의 적용성 검토. 한국수자원학회논문집, 40(2), pp. 147-158 https://doi.org/10.3741/JKWRA.2007.40.2.147
  13. Allen, R. G., Jensen, M. E., Wright, J. L., and Burman, R. D. (1989). Operational estimates of evapotranspiration. Agronomy Journal, 81, pp. 650-662 https://doi.org/10.2134/agronj1989.00021962008100040019x
  14. Anderson, E. A. (1976). A point energy and mass balance model of snow cover. NOAA technical Report NWS 19, U.S. Dept. of Commerce, National Weather sevice
  15. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large area hydrologic modeling and assessment Part 1: Model development. Journal of the American Water Resources Association, 34(1), pp. 73-89 https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  16. Chaplot, V. (2005). Impact of DEM mesh and soil map scale on SWAT runoff, sediment, and $NO_3-N$ loads predictions. Journal of Hydrology, 312, pp. 207-222 https://doi.org/10.1016/j.jhydrol.2005.02.017
  17. Chaplot, V., Saleh, A., and Jaynes, D. B. (2005). Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and $NO_3-N$ loads at the watershed level. Journal of Hydrology, 312, pp. 223-234 https://doi.org/10.1016/j.jhydrol.2005.02.019
  18. Choi, Y. (2002). Trends in daily precipitation events and their extremes in the southern region of Korea. Journal of Environmental Impact Assessment, 11, pp. 189-203
  19. Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., and Gu, R. (1999). Validation of EPIC for two watersheds in southwest Iowa. Journal of Environmental Quality, 28(3), pp. 971-979 https://doi.org/10.2134/jeq1999.00472425002800030030x
  20. Easterling, W. E., Rosenburg, N. J., McKenney, M. S., Jones, C. A., Dyke, P. T., and Williams, J. R. (1992). Preparing the Erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effect of $CO_2$. Agricultural and Forest Meteorology, 59, pp. 17-34 https://doi.org/10.1016/0168-1923(92)90084-H
  21. Echhardt, K. and Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284, pp. 244-252 https://doi.org/10.1016/j.jhydrol.2003.08.005
  22. Field, C. B., Jackson, R. B., and Mooney, H. A. (1995). Stomatal responses to increased $CO_2$: Implications from the plant to the global scale. Plant Cell Environment, 18(10), pp. 1214-1225 https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
  23. Fontaine, T. A., Klassen, J. F., Cruickshank, T. S., and Hotchkiss, R. H. (2001). Hydrological response to climate change in the Black Hills of South Dakota, USA. Hydrologiques, 46(1), pp. 27-40 https://doi.org/10.1080/02626660109492798
  24. Green, C. H., Tomer, M. D., Di Luzio, M., and Arnold, J. G. (2006). Hydrologic evaluation of the Soil and Water Assessment Tool for a large tile-drained watershed in Iowa. Transactions of the ASAE, 49(2), pp. 413-422 https://doi.org/10.13031/2013.20415
  25. Gu, R. and Li, Y. (2002). River temperature sensitivity to hydraulic and meteorological parameters. Journal of Environmental Management, 66(1), pp. 43-56 https://doi.org/10.1006/jema.2002.0565
  26. Helsel, D. R. and Hirsch, R. M. (1992). Statistical Methods in Water Resource, Elsevier, New York
  27. Intergovernmental Panel on Climate Change (IPCC) (1995). In: J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.), The Science of Climate Change, 1996. Cambridge University Press, Cambridge, p. 572
  28. IPCC (2001). Climate change 2001 : The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
  29. IPCC (2007). Climate change 2007 : The Scientific Basis, IPCC Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
  30. Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F., and Gu, R. (2006). Climate change sensitivity of water yield in the Upper Mississippi River Basin. Journal of the American Water Resources Association, 44(4), pp. 997-1015 https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  31. Legates, D. R. and McCabe, G. J. (1999). Evaluating the use of 'goodness of fit' measures in hydrologic and hydroclimatic model validation. Water Resource Research, 35(1), pp. 233-241 https://doi.org/10.1029/1998WR900018
  32. Lenhart, T., Eckhardt, K., Fogrer, N., and Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 27(9), pp. 645-654 https://doi.org/10.1016/S1474-7065(02)00049-9
  33. Lenhart, T., Fohrer, N., and Frede, H. G. (2003). Effects of land use changes on the nutrient balance in mesoscale catchments. Physics and Chemistry of the Earth, 28. 1301-1309 https://doi.org/10.1016/j.pce.2003.09.006
  34. Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., De Angelis, P., Foresreuter, M., Freeman, M., Jackson, S. B., Kellomaki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K., Curtis, P. S., and Jarvis, P. G. (2001). Stomatal conductance of forest species after long-term exposure to elevated $CO_2$ concentrations. New Phytologist, 149(2), pp. 247-264 https://doi.org/10.1046/j.1469-8137.2001.00028.x
  35. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London Series B, 281(980), pp. 277-294 https://doi.org/10.1098/rstb.1977.0140
  36. Morison, J. I. L. (1987). Intercellular $CO_2$ concentration and stomatal response to $CO_2$. In E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), Stomatal function. Standford University Press, Palo Alto, Ca. pp. 229-251
  37. Morison, J. I. L. and Gifford, R. M. (1983). Stomatal sensitivity to carbon dioxide and humidity. Plant Physiology, 71(4), pp. 789-796 https://doi.org/10.1104/pp.71.4.789
  38. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual model; Part1 - A discussion of principles. Journal of Hydrology, 10(3), pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  39. Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchere, V., and van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61, pp. 131-154 https://doi.org/10.1016/j.catena.2005.03.007
  40. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2005). Soil and Water Assessment Tool Theoretical Documentation. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Texas
  41. Pritchard, S. G., Roger, S. A., Prior, S. A., and Peterson, C. M. (1999). Elevated $CO_2$ and plant structure: A review. Global Change Biology, 5(7), pp. 807-837 https://doi.org/10.1046/j.1365-2486.1999.00268.x
  42. Ramanarayanan, T. S., Williams, J. R., Dugas, W. A., Heuck, L. M., and McFarland, A. M. S. (1997). Using APEC to identify alternative practiced for animal waste management, Minnea-polis, MN. ASAE Paper No. 97-2209
  43. Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. (2001a). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), pp. 1169-1188 https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  44. Santhi, C., Arnold, J. G., Williams, J. R., Hauck, L., and Dugas. W. A. (2001b). Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE, 44(6), pp. 1559-1570
  45. Schulze, R. (2000). Transcending scales of space and time in impact studies of climate and climate change on agrohydrological responses. Agriculture, Ecosystems and Environment, 82, pp. 185-212 https://doi.org/10.1016/S0167-8809(00)00226-7
  46. Servat, E. and Dezetter, A. (1991). Selection of calibration objective functions in the context of rainfall runoff modeling in a Sudanese savannah area. Hydrological Sciences Journal, 36(4), pp. 307-330 https://doi.org/10.1080/02626669109492517
  47. Sharpley, A. N. and Williams, J. R. (eds.) (1990). EPICErorion productivity impact calculator, 1. model documentation. U.S. Depertment of Agriculture, Agricultural Research Service, Tech. Bull. 1768
  48. Stockle, C. O., Williams, J. R., Rosenburg, N. J., and Jones, C. A. (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part1-Modification of the EPIC model for climate change analysis. Agricultural Systems, 38(3), pp. 225-238 https://doi.org/10.1016/0308-521X(92)90067-X
  49. Stonefelt, M. D., Fontaine, T. A., and Hotchkiss, R. A. (2000). Impacts of climate change on water yield in the upper Wind river basin. Journal of the American Water Resources Association, 36(2), pp. 321-336 https://doi.org/10.1111/j.1752-1688.2000.tb04271.x
  50. Thomson, A. M., Brown, R. A., Rosenberg, N. J., Izaurralde, R. C., Legler, D. M., and Srinivasan, R. (2003). Simulated impacts of El Nino/southern oscillation on Unied States water resource. Journal of the American Water Resources Association, 39(1), pp. 137-148 https://doi.org/10.1111/j.1752-1688.2003.tb01567.x
  51. Van Der Perk (1997). Effect of Model Structure om the Accuracy and Uncertainly of Results from Water Quality Models. Hydrological Processes, 11(3), pp. 227-239 https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3<227::AID-HYP440>3.0.CO;2-#
  52. Wand, S. J. E., Midgley, G. F., Jones, M. H., and Curtis, P. S. (1999). Responses of wild C4 and C3 glass(Poaceae) species to elevated atmospheric $CO_2$ concentrations: A metaanalytic test of current theories and perceptions. Global change biology, 5(6), pp. 723-741 https://doi.org/10.1046/j.1365-2486.1999.00265.x
  53. Wu, K., Johnston, C. A., Cherrier, C., Bridgham, S., and Shmagin, B. (2006). Hydrologic calibration of the SWAT model in a Great lakes coastal watershed. model validation. American Institute of Hydrologic Annual Meeting & International Conference, Baton Rouge, LA, pp. 15-28
  54. Wullschleger, S. D., Tschaplinski, T. J., and Norby, R. J. (2002). Plant water relations at elevated $CO_2$ - implications for water-limited environments. Plant, Cell and Environment, 25, pp. 319-331 https://doi.org/10.1046/j.1365-3040.2002.00796.x
  55. Xiaojun, K., Jianping, G., Yi, W., and Cunjie, Z. (2007). Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. Journal of Hydrology, 347, pp. 347-357 https://doi.org/10.1016/j.jhydrol.2007.09.051