• 제목/요약/키워드: Atmospheric deposition

검색결과 459건 처리시간 0.029초

Characteristics of Ambient Metals: Size Segregated Ambient Concentrations and Dry Deposition Fluxes at Four Sites in Kunpo in 2000

  • Kim, Yong-Pyo;Yun, Hui-Jung;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.57-68
    • /
    • 2002
  • Atmospheric dry deposition fluxes and size segregated concentrations of particulate metal elements were measured at four sites in Kunpo, a small city in the Seoul metropolitan area in Korea. At each site, aerosol samples were collected by dry deposition plates, a cascade impactor, and a coarse panicle rotary impactor during four sampling periods. At all sites, the average fluxes of metals measured during daytime were higher than nighttime fluxes due to higher wind speeds and higher ambient concentrations during daytime. The average fluxes of crustal elements (Al, Ca) were 1∼2 orders of magnitude higher than anthropogenic elements (As, Cd, Cu, Mn, Ni, Pb, and Zn). The daytime fluxes of Al and Ca were between 90 and 12000 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Al and Ca were between 20 and 2200 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. The daytime fluxes of Pb, a typical anthropogenic element, were between 20 and 160$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Pb were between ND and 100$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. Also the ambient metal concentrations during daytime were higher than nighttime. Based on a dust emission estimation study in Kunpo, it was found that dust emissions during daytime are higher than nighttime. The concentrations of crustal elements were higher than anthropogenic elements. The distributions of heavy metals were mainly in small particles (D$\_$p/ 9㎛). The fraction of crustal elements in the large particles (D$\_$p/> 9㎛) were higher than anthropogenic elements.

호흡기 침착부위에 따른 미세먼지 중 수용성 이온성분의 일별 농도 측정 (Daily Concentration Measurements of Water-soluble Inorganic Ions in the Atmospheric Fine Particulate for Respiratory Deposition Region)

  • 강공언;이상복
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.387-397
    • /
    • 2005
  • In oder to understand the deposition possibility of water-soluble inorganic ions in the atmospheric fine particulates for the human respiratory tract, the mass size distribution of ion species was measured using an Anderson sampler in the Iksan during fall, 2004. Samples were analyzed for major water-soluble ions using Dionex DX-100 ion chromatograph. The size distribution of water-soluble inorganic ions in the atmospheric particulates appeared bimodal distribution, which were divided around $1-2{\mu}m$ into two groups. Mass site distribution of total ion in the coarse mode was found to be almost similar level during the sampling period, but fluctuations of mass size distribution in the fine mode were observed. Considering the mass size distribution of total ion concentrations for the respiratory deposition region, it was found that about 77.1% of total tons could be deposited in the alveolar region, and which dominated the daily variation of total ion concentrations. The concentration of total ions, which could be deposited in both the head region and the tracheobronchial region, was $3.95{\mu}g/m^3$, whereas that in the alveolar rerion was $13.28{\mu}g/m^3$. Dominant ions which could be deposited in the alveolar region were ${NO_3}{^-},\;{SO_4}^{2-}\;and\;{NH_4{^+}$, accounting for about 40%, 27% and 22% of the total ions, respectively. Although $K^+$ was approximately 3% of total ions, it was shown that most of this could be deposited in the alveolar region due to its high fraction of small size distribution originated from anthropogenic source of biomass burning. The presence of these ions in the fine mode may be of public health significance as they are very biologically harmful to health and have a high probability of being deposited in human lung tissue.

연속공정기반 저온 상압 원자층 증착 시스템을 이용한 유무기 멀티레이어 배리어 박막에 관한 연구 (A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System)

  • 이재욱;김현범;최경현
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, the organic material Poly(methyl methacrylate) PMMA is used with inorganic $Al_2O_3$ to fabricate organic-inorganic multilayer barrier thin films. The organic thin films are developed using a roll-to-roll electrohydrodynamic atomization system, whereas the inorganic are grown using a roll-to-roll low-temperature atmospheric pressure atomic layer deposition system. For the first time, these two technologies are used together to develop organic-inorganic multilayer barrier thin films in atmospheric condition. The films are grown under optimized parameters and classified into three classes based on the layer structures, when the total thickness of the barrier is maintained at ~ 160 nm. All classes of barriers show good morphological, optical and chemical properties. The $Al_2O_3$ films with a low average arithmetic roughness of 1.58 nm conceal the non-uniformity and irregularities in PMMA thin films with a roughness of 5.20 nm. All classes of barriers show a notably good optical transmission of ~ 85 %. The hybrid organic-inorganic barriers show water vapor and oxygen permeation in the range of ${\sim}3.2{\times}10^{-2}g/m^2/day$ and $0.015cc/m^2/day$ at $23^{\circ}C$ and 100% relative humidity. It has been confirmed that it can be mass-produced and used as a low-cost barrier thin film in various printing electronic devices.

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

대기-토양 경계면간 수은의 교환현상에 대한 연구 (Studies of the Exchange Processes of Mercury Across Air-soil Boundary)

  • 김기현
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.107-117
    • /
    • 2010
  • The atmospheric geochemistry of mercury is generalls represented by gaseous elemental phase that exhibits the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) with its high chemical stability. In the recognition of the environmental significance of its global cycling, enormous efforts have been devoted to the measurements of Hg exchange across air-soil boundary. To be able to describe the fundamental aspects on this subject, the current development in the measurements of atmospheric exchange rates of mercury has been summarized using the current database reported worldwide. As a first step, different techniques commonly employed in its measurements are introduced with the discussions on their merits and disadvantages. Then, the results derived from various field measurement campaigns are also compared and discussed. The direction for the future study of mercury is presented at last.