• Title/Summary/Keyword: Atmospheric Plasma

Search Result 597, Processing Time 0.023 seconds

The Effect of Etching on Low-stress Mechanical Properties of Polypropylene Fabrics under Helium/Oxygen Atmospheric Pressure Plasma

  • Hwang, Yoon J.;An, Jae Sang;McCord, Marian G.;Park, Shin Woong;Kang, Bok Choon
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.145-150
    • /
    • 2003
  • Polypropylene nonwoven fabrics were exposed to He/$O_2$ atmospheric pressure glow discharge plasma. Surface chemical analysis and contact angle measurement revealed the surface oxidation by formation of new functional groups after plasma treatment. Weight loss (%) measurement and scanning electron microscopy analysis showed a significant plasma etching effect. It was investigated in low-stress mechanical properties of the fabrics using Kawabata Evaluation System (KES-FB). The surface morphology change by plasma treatment increased surface friction due to an enhancement of fiber-to-fiber friction, resulting in change of other low-stress mechanical properties of fabric.

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

Inactivation of Campylobacter jejuni using Radio-frequency Atmospheric Pressure Plasma on Agar Plates and Chicken Hams

  • Kim, Joo-Sung;Lee, Eun-Jung;Cho, Eun-Ah;Kim, Yun-Ji
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.317-324
    • /
    • 2013
  • Radio-frequency driven atmospheric pressure plasma using argon gas was studied in the inactivation of Campylobacter jejuni in order to investigate its applicability. First, the inactivation study was conducted on an agar surface. C. jejuni NCTC11168 was reduced by more than 7 Log CFU after an 88 s treatment. Another strain, ATCC49943, was studied; however, the inactivation was less efficient, with a 5 Log CFU reduction after a 2 min treatment. Then, chicken breast ham was studied at the $10^6$ CFU inoculation level. The inactivation efficiency was much lower for both strains compared to that on the agar plates. C. jejuni NCTC11168 and ATCC49943 were reduced by 3 Log CFU after a 6 min treatment and by 1.5 Log CFU after a 10 min treatment, respectively. The scanning electron microscopy analysis indicated that C. jejuni cells were deformed or transformed into coccoid form under the plasma treatment. During the plasma treatment, the temperature of the samples did not rise above $43^{\circ}C$, suggesting that heat did not contribute to the inactivation. Meanwhile, water activity significantly decreased after a 10 min treatment (p<0.05). This study conveyed that radio-frequency atmospheric pressure plasma can effectively inactivate C. jejuni with strain-specific variation.

Development of an advanced atmospheric pressure plasma source with high spatial uniformity and selectiveness for surface treatment

  • Im, Yu-Bong;Choe, Won-Ho;Lee, Seung-Hun;Han, U-Yong;Lee, Jong-Hyeon;Lee, Sang-Gyun;Ha, Jeong-Min;Kim, Jong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.176-177
    • /
    • 2016
  • In the last few decades, attention toward atmospheric pressure plasma (APP) has been greatly increased due to the numerous advantages of those applications, such as non-necessity of high vacuum facility, easy setup and operation, and low temperature operation. The practical applications of APP can be found in a wide spectrum of fields from the functionalization of material surfaces to sterilization of medical devices. In the secondary battery industry, separator film has been typically treated by APP to enhance adhesion strength between adjacent films. In this process, the plasma is required to have high stability and uniformity for better performance of the battery. Dielectric barrier discharge (DBD) was usually adopted to limit overcurrent in the plasma, and we developed the pre-discharge technology to overcome the drawbacks of streamer discharge in the conventional DBD source which makes it possible to produce a super-stable plasma at atmospheric pressure. Simulations for the fluid flow and electric field were parametrically performed to find the optimized design for the linear jet plasma source. The developed plasma source (Plasmapp LJPS-200) exhibits spatial non-uniformity of less than 3%, and the adhesion strength between the separator and electrode films was observed to increase 17% by the plasma treatment.

  • PDF

Alteration of Hydroxyapatite Surface after Tooth Bleaching with Nonthermal Atmospheric Pressure Plasma

  • Nam, Seoul Hee;Lee, Hae June;Hong, Jin Woo;Kim, Gyoo Cheon
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.187-192
    • /
    • 2014
  • Nonthermal atmospheric pressure plasma has attracted great interest for biomedical applications. The plasma consists of charged particles, radicals, and a strong electric field as the fourth state of matter. This study evaluated the change in the surface roughness after tooth bleaching by plasma in combination with a low concentration (15%) of carbamide peroxide, specifically whether the application of plasma produced detriments, such as demineralization and structural change, with the goal of efficient and safe tooth bleaching. After being combined with plasma and 15% carbamide peroxide, the hydroxyapatite surface was significantly smoother with a low roughness average value. Tooth bleaching with 15% carbamide peroxide alone produced an irregular surface and increased the surface roughness with high roughness average value. Tooth bleaching with plasma resulted in no significant variations in hydroxyapatite in terms of change in surface roughness and surface topography. The application of tooth bleaching with plasma is not deleterious to dental hard tissue, implicating it as a safe tooth bleaching technique.

Generation of Low Temperature Plasma at Atmospheric Pressure and its Application to Si Etching in Open Air (대기압 비평형 플라스마의 발생 및 규소(Si)식각에의 응용)

  • Lee, Bong-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.409-412
    • /
    • 2002
  • Under atmospheric pressure, apparently homogeneous and stable plasma can be generated from insulator barrier rf plasma generators each of which has an rf powered cathode and a grounded anode covered with a dielectric insulating material. In order to characterize the generating plasma under atmospheric pressure, some basic characteristic have been evaluated by the Langmuire probe method as well as by optical emission spectroscopy. From the result of plasma characteristics, the generated plasma was verified to be nonequilibrium; T(electron)>T(excitation)>T(gas). High rate Si(100) etching (($1.5{\mu}m$/min) were achieved by using He plasma containing a small amount of $CF_4$.

Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet

  • Lee, Hyun-Young;Ok, Jung-Woo;Lee, Ho-Jun;Kim, Gyoo Cheon;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.51-55
    • /
    • 2016
  • The surface treatment of a titanium implant is investigated with a non-thermal atmospheric pressure plasma jet. The plasma jet is generated by the injection of He and $O_2$ gas mixture with a sinusoidal driving voltage of 3 kV or more and with a driving frequency of 20 kHz. The generated plasma plume has a length up to 35 mm from the jet outlet. The wettability of 4 different titanium surfaces with plasma treatments was measured by the contact angle analysis. The water contact angles were significantly reduced especially for $O_2/He$ mixture plasma, which was explained with the optical emission spectroscopy. Consequently, plasma treatment enhances wettability of the titanium surface significantly within the operation time of tens of seconds, which is practically helpful for tooth implantation.

Low Voltage Atmospheric Plasma Generation using DBD Initiation Carrier Injection (유전체 장벽 방전(DBD) 씨드 캐리어를 이용한 저 전압 대기압 플라즈마 발생)

  • Hwang, Sol;Park, Hyunho;Kim, Youngmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.82-86
    • /
    • 2018
  • Low voltage atmospheric plasma generation using DBD Initiation carrier injection is reported. DBD afterglow was used as initiation carriers prior to a primary discharge and a significant reduction in the breakdown voltage of atmospheric discharge was observed when sufficient initiation carriers were provided. Quantative correlation study between the breakdown voltage and the initiation carriers suggests that the atmospheric breakdown voltage reduces to only half of the breakdown voltage for Townsend regime. Also, use of DBD initiation carrier injection likely offers better device reliability by protecting electrodes with a dielectric layer and thus suppressing electrode wear.

Development of Atmospheric Pressure Plasma Sources in KRISS

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.151-151
    • /
    • 2011
  • Atmospheric-pressure plasmas are used in a variety of materials processes. The lifetime of most atmospheric-pressure plasma sources is limits by electrode erosion due to energetic ion bombardment. These drawbacks were solved recently by several microplasma sources based on microstrip structure, which are more efficient and less prone to perturbations than other microplasma sources. In this work, we propose microplasma sources based on strip line and microstrip line, developed for the generation of microplasmas even in atmospheric air and analyzes these systems with microwave field simulation via comparative study with two previous microwave sources (Microstrip Spit Ring Resonator (MSRR), Microstrip Structure Source (MSS)).

  • PDF

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF