• Title/Summary/Keyword: Asynchronous System

Search Result 465, Processing Time 0.031 seconds

A lower bound of bit error rate of chip asynchronous Pattern codes in 2-dimensional optical CDMA system (2차원 광부호분할 다중접속 시스템에서 칩 비동기 패턴부호의 비트오류율 하한값 유도)

  • Lee, Tae-Hoon;Park, Young-Jae;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3239-3241
    • /
    • 1999
  • Two-dimensional optical code-division multiple access is a system to transmit a two- dimensional data via parallel transmission line. The probability density function (pdf) of interference noise from other users is calculated and the pdf of asynchronous interference noise is newly calculated to present lower bounds of probability of error. The corresponding bit error rate is evaluated from this results.

  • PDF

Modeling of an isolated intersection using Petri Network

  • 김성호
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.49-64
    • /
    • 1994
  • The development of a mathematical modular framework based on Petri Network theory to model a traffic network is the subject of this paper. Traffic intersections are the primitive elements of a transportation network and are characterized as event driven and asynchronous systems. Petri network have been utilized to model these discrete event systems; further analysis of their structure can reveal information relevant to the concurrency, parallelism, synchronization, and deadlock avoidance issuse. The Petri-net based model of a generic traffic junction is presented. These modular networks are effective in synchronizing their components and can be used for modeling purposes of an asynchronous large scale transportation system. The derived model is suitable for simulations on a multiprocessor computer since its program execution safety is secured. The software pseudocode for simulating a transportation network model on a multiprocessor system is presented.

  • PDF

A Reinforcement learning-based for Multi-user Task Offloading and Resource Allocation in MEC

  • Xiang, Tiange;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.45-47
    • /
    • 2022
  • Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes

Robust Process Fault Detection System Under Asynchronous Time Series Data Situation (비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구)

  • Ko, Jong-Myoung;Choi, Ja-Young;Kim, Chang-Ouk;Sun, Sang-Joon;Lee, Seung-Jun
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.

Proof that the Election Problem belongs to NF-completeness Problems in Asynchronous Distributed Systems (비동기적 분산 시스템에서 선출 문제는 NF-completeness 문제임을 증명)

  • Park, Sung-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.3
    • /
    • pp.169-175
    • /
    • 2002
  • This paper is about the hardness of the Election problem in asynchronous distributed systems in which processes can crash but links are reliable. The hardness of the problem is defined with respect to the difficulty to solve it despite failures. It is shown that problems encountered in the system are classified as three classes of problems: F (fault-tolerant), NF (Not fault-tolerant) and NFC(NF-completeness). Among those, the class NFC is the hardest problems to solve. In this paper, we prove that the Election problem is the most difficult problem which belongs to the class NFC.

Model Matching for Input/Output Asynchronous Machines Using Output Equivalent Machines (출력 등가 머신을 이용한 비동기 순차 머신의 모델 정합)

  • Park, Yong Kuk;Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.173-181
    • /
    • 2014
  • This paper addresses the problem of model matching control for a class of systems modeled as input/output asynchronous sequential machines. Based on the feedback control scheme, we design a corrective controller that compensates the behavior of the closed-loop system so as to match a reference model. Whereas the former studies use state observers and the output burst for designing a controller, the present research needs neither the observer nor the output burst in controller design. We define the 'output equivalent machine' of the considered machine to describe the existence condition and the construction algorithm for the proposed controller. A case study is provided to show the operation of the proposed corrective controller.

Asynchronous Guidance Filter Design Based on Strapdown Seeker and INS Information (스트랩다운 탐색기 및 INS 정보를 이용한 비동기 유도필터 설계)

  • Park, Jang-Seong;Kim, Yun-young;Park, Sanghyuk;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.873-880
    • /
    • 2020
  • In this paper, we propose a guidance filter to estimate line of sight rate with strapdown seeker measurements and INS(Inertial Navigation System) information. The measurements of proposed guidance filter consisted of the LOS(Line of Sight) and relative position that can be calculated with the seeker's measurements, INS information and known target position, also the filter is based on an asynchronous filter to use outputs of the two sensors that are out of synchronous and period. Through the proposed filter, we can reduce the effect on parasitic loop that can be caused by using large time delay seeker and improve the estimation performance.

The Study on Performance of Reverse Link Synchronous DS-CDMA System for IMT-2000 (IMT-2000을 위한 역방향 링크 동기화 DS-CDMA 시스템의 성능에 관한 연구)

  • 황승훈;김정호;박병훈;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.996-1004
    • /
    • 1999
  • In this paper, we evaluate the performance of reverse link synchronous CDMA with orthogonal spreading and Rake combining, and compare this to that of an asynchronous transmission under Rayleigh multipath fading environments. The link performance is evaluated in terms of average bit error rate (BER) and capacity, assuming ideal BPSK data modulation. The focus of this paper is on the impact that the multipath intensity profile (MIP) shape and number of taps in Rake receiver have on the performance of synchronous transmission. The results show the reverse link synchronous transmission can always achieve smaller BER than the asynchronous transmission even if inter-path interference exists.

  • PDF

Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems (CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발)

  • 이희배;김홍열;김대원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

Performance Analysis for Optimizing Threshold Level Control of a Receiver in Asynchronous 2.5 Gbps/1.2 Gbps Optical Subscriber Network with Inverse Return to Zero(RZ) Coded Downstream and NRZ Upstream Re-modulation

  • Park, Sang-Jo;Kim, Bong-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.361-366
    • /
    • 2009
  • We propose the performance enhancing method optimization of an asynchronous 2.5 Gbps/1.25 Gbps optical subscriber network with inverse RZ (Return to Zero) coded downstream and NRZ (Non Return to Zero) upstream re-modulation by adjusting threshold level control of a receiver. We theoretically analyze the BER (Bit Error Rate) performance by modeling the occurrence of BER by simulation with MATLAB according to the types of downstream data. The results have shown that the normalized threshold level in an optical receiver could be saturated at 1/3 as the SNR (Signal to Noise Ratio) increases. The needed SNR for obtaining the BER $10^{-9}$ can be reduced by $\sim$5 dB by optimizing the normalized threshold level at 1/3 instead of by using the conventional receiver with threshold level of 0.5. The proposed system can be a useful technology for asynchronous optical access networks with asymmetric upstream and downstream data rates, because the improved minimum receiving power could replace a light source with a source with lower power and lower cost in an OLT (Optical Line Termination).