• Title/Summary/Keyword: Asymptotically optimal

Search Result 64, Processing Time 0.022 seconds

On a Simple and Stable Merging Algorithm (단순하고 스테이블한 머징알고리즘)

  • Kim, Pok-Son;Kutzner, Arne
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.455-462
    • /
    • 2010
  • We investigate the worst case complexity regarding the number of comparisons for a simple and stable merging algorithm. The complexity analysis shows that the algorithm performs O(mlog(n/m)) comparisons for two sequences of sizes m and n $m{\leq}n$. So, according to the lower bound for merging $\Omega$(mlog(n/m)), the algorithm is asymptotically optimal regarding the number of comparisons. For proving the worst case complexity we divide the domain of all inputs into two disjoint cases. For either of these cases we will extract a special subcase and prove the asymptotic optimality for these two subcases. Using this knowledge for special cases we will prove the optimality for all remaining cases. By using this approach we give a transparent solution for the hardly tractable problem of delivering a clean complexity analysis for the algorithm.

Optimization in Extraction Conditions of Carotenoids from Citrus unshiu Press Cake by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 감귤박으로부터 카로테노이드 추출 조건의 최적화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1104-1109
    • /
    • 2003
  • Response surface methodology (RSM) was used to investigate the effects of the processing parameters on supercritical $CO_2\;(SC-CO_2)$. extraction of total carotenoids and ${\beta}$-cyptoxanthin from Citrus unshiu press cake. The parameters tested were $SC-CO_2$ pressure, dynamic extraction time, and concentration of ethanol added as the modifier to $CO_2$. Experimental data correlated well with the processing parameters (p<0.01), and there was a high statistically significant multiple regression relationship for the extraction of total carotenoids and ${\beta}-cyrptoxanthin$ ($R^2=0.9789$ and 0.9796, respectively). The optimal processing conditions were extraction pressure 33.4 and 37.3 MPa, extraction time 39.6 and 41.0 min, ethanol concentration 18.6 and 17.0% for total carotenoids and ${\beta}-cryptozanthin$, respectively. Maximum extraction yields predicted by RSM were 61.1 and 95.8% ppm, respectively. The extraction yield of total carotenoids increased asymptotically with the increase of the extraction pressure. It increased in proportion to extraction time and concentration of the cosolvent. The extraction yield of ${\beta}-cryptoxanthin$ increased with extraction pressure, extraction time, and concentration of the cosolvent. The extraction time and the concentration of the cosolvent, and the interaction between extraction time and the concentration of the cosolvent significantly affected the extraction yields of carotenoids from C. unshiu press cake.

The Sub-Peres Functions for Random Number Generation (무작위수생성을 위한 부 페레즈 함수)

  • Pae, Sung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.19-30
    • /
    • 2013
  • We study sub-Peres functions that are defined recursively as Peres function for random number generation. Instead of using two parameter functions as in Peres function, the sub-Peres functions uses only one parameter function. Naturally, these functions produce less random bits, hence are not asymptotically optimal. However, the sub-Peres functions runs in linear time, i.e., in O(n) time rather than O(n logn) as in Peres's case. Moreover, the implementation is even simpler than Peres function not only because they use only one parameter function but because they are tail recursive, hence run in a simple iterative manner rather than by a recursion, eliminating the usage of stack and thus further reducing the memory requirement of Peres's method. And yet, the output rate of the sub-Peres function is more than twice as much as that of von Neumann's method which is widely known linear-time method. So, these methods can be used, instead of von Neumann's method, in an environment with limited computational resources like mobile devices. We report the analyses of the sub-Peres functions regarding their running time and the exact output rates in comparison with Peres function and other known methods for random number generation. Also, we discuss how these sub-Peres function can be implemented.

Mathematical Models of Photosynthetic Rate of Hydroponically Grown Cucumber Plants as Affected by Light Intensity, Air Temperature, Carbon Dioxide and Leaf Nitrogen Content (광도, 온도, $\textrm{CO}_2$ 농도 및 엽중 질소농도의 변화에 따른 양액재배 오이의 광합성속도에 관한 수리적 모형)

  • 임준택;백선영;정현희;현규환;권병선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • Gross photosynthetic rats of leaves of hydroponically grown cucumber plants(Cucumis sativus L. cv. Guwoosalichungjang) were measured under various conditions of photosynthetic photon flux(PPF), ambient $CO_2$ concentration, air temperature and leaf nitrogen contents. Light compensation point of leaf photosynthesis appeared to be in the range of 10~20$\mu$mol.m$^{-2}$ .s$^{-1}$ and light saturation point be above 1000$\mu$mol.m$^{-2}$ .s$^{-1}$ . Gross photosynthetic rates increased persistently and asymptotically as air temperature rose from 12$^{\circ}C$ to 32$^{\circ}C$. However, there were only small differences in gross photosynthetic rates in the range of 24-32$^{\circ}C$, so that the range seemed to be optimal for photosynthesis of cucumber plants at the condition of $CO_2$ concentration of 400$\mu$mol.mol$^{-1}$ and PPF of around 400$\mu$mol.m$^{-2}$ .s$^{-1}$ . $CO_2$ compensation point of leaf photosynthesis appeared to be in the range of 20-40$\mu$mol.mol$^{-1}$ and $CO_2$ saturation point be above 1200$\mu$mol.mol$^{-1}$ . Gross photosynthetic rates increased sigmoidally as leaf nitrogen content increased. These environmental factors interacted synergistically to enhance gross photosynthetic rate, so that the rate increased multiplicatively s level of one factor increased progressively with higher levels of he other factors. Mathematical models wer developed to estimate the gross photosynthetic rate in accordance with the variations of these environmental factors. These modes can be used not only to explain he variation of growth or yield of cucumber plants under different environmental conditions but also as building blocks of plant growth model or expert system of cucumber plants.

  • PDF