SHE X sA|AEEE =FX 2010, Vol. 20, No. 4, pp. 455-462
AL = H = ~
Ctestl AHO|Se HEALNEF

On a Simple and Stable Merging Algorithm

Z=2M' - mxy opd?

Pok-Son Kim and Arne Kutzner

'Z ol stm £=stn}
E-mail: pskim@kookmin.ac.kr
‘shfol &t m M EA|AH stn}

E-mail- kutzner@hanyang.ac.kr

Abstract

We investigate the worst case complexity regarding the number of comparisons for a simple and stable merging
algorithm. The complexity analysis shows that the algorithm performs O(mlog(n/m)) comparisons for two sequences
of sizes m and n m <n. So, according to the lower bound for merging 2(mlog(n/m)), the algorithm is asymptotically
optimal regarding the number of comparisons.

For proving the worst case complexity we divide the domain of all inputs into two disjoint cases. For either of these
cases we will extract a special subcase and prove the asymptotic optimality for these two subcases. Using this
knowledge for special cases we will prove the optimality for all remaining cases. By using this approach we give a
transparent solution for the hardly tractable problem of delivering a clean complexity analysis for the algorithm.

Key Words : stable merging, minimum storage, complexity of algorithms

1. Introduction There are two significant lower bounds for merging.

The lower bound for the number of assignments is

Merging denotes the operation of rearranging the el- m+n becagse every e%ement of the input sequences
ements of two adjacent sorted sequences of sizes m can change its position in the sorted output. As shown
and n, so that the result forms one sorted sequence of by Knuth in [1] the lower bound for the number of

m~+n elements. An algorithm merges two adjacent se—
quences with minimum storage [1] when it needs
O(log®(m+n)) bits additional space at most. It is re-
garded as stable, if it preserves the initial ordering of
elements with equal value.

) : n
comparisons is Q(mlog;), where m < n.

The simple standard merge algorithm is rather in-
efficient, because it uses linear extra space and always
needs a linear number of comparisons. The Recmerge
algorithm of Dudzinski and Dydek [2] is minimum stor-
age merging algorithm that is asymptotically optimal

HModX 20104 3 6¢ . °

efzolxt : 20104 62 202 regar_dmg the nur_nber of C(.)l’.npa'IISOl’lS. It per‘.forms the
o]l =22 2008 ME(MSIEI|SE) YUoE merging by a binary partitioning of both input se—
stzet2 R X o (KRF-2008-531-D00020) 2 20104 & quences which operates as the foundation of a rotation
Sojgyetm mijod TH| X|US Hiof L E of ol that is followed by two recursive calls.

455

Ed|

SAAH

stal ==X 2010, Vol. 20, No. 4

|
) >]
ol2]50)1]a]7]s Fffﬂ ol2]5]011]4]7]|s
Pl 1
a) /I blloj2|sjot1|4]7|8] o < 7> Rotation
B —
0|1(2]4)5|7[8]9 » o|2}1|a]s0t7|s
| <

Recursion 1 Recursion 2

Fig. 1. SymMerge example

Another class of merging algorithms is the class of in
place merging algorithms, where the external space is
restricted to a constant amount merely. Recent work in
this area are the publications [3, 4, 5, 6, 7], that de-
scribe algorithms which are all asymptotically optimal
regarding the number of comparisons as well as
assignments. However, these algorithms are structurally
quite complex and rely heavily on other concepts, as
e.g. Kronrod's idea of an internal buffer [8], Mannila
and Ukkonen’s technique for block rearrangements [9]
and Hwang and Lin’'s merging algorithm [10].

In [11] we presented a stable minimum storage merging
algorithm called SymMerge and investigated its worst
case complexity regarding the number of comparisons
as well as assignments. However, the complexity anal—
ysis was restricted only to a special case called
“Maximum spanning case”. Furthermore the method
taken for the complexity analysis was quite complex.
In this paper we complete our proof based on a new
simplified method for proving the worst case
complexity. Consequently we get the result that the

SymMerge algorithm performs O(mlog %) compar-
isons for two sequences of sizes m and n (m < n).
According to the lower bound Q(mlog%) mentioned

above, we can imply SymMerge is asymptotically opti—
mal regarding the number of comparisons.

For proving the worst case complexity we divide the
domain of all inputs into two disjoint classes (cases),
for later reference denoted by case I and case II. For
either of these cases we will extract a special subcase
and prove the asymptotic optimality for these subcases.
Then the optimality of the special subcase of case I
logically implies the optimality of case I in general.
Further, based on the optimality for the special subcase
of case II, we will prove the optimality for all remaining
cases of case IL

2. The SymMerge Algorithm

We start with a brief introduction of the merging
method of the SymMerge algorithm presented in [11].
Let us assume that we have to merge the two se-

456

quences u =(0,2,5,9) and v=(1,4,7,8). When we com-
pare the input with the sorted result, we can see that in
the result the last two elements of u occur on positions
belonging to v, and the first two elements of v appear
on positions belonging to u (see Fig. 1 a)). So, 2 ele—
ments were exchanged between v and v. The kernel of
SymMerge is to compute this number of side-changing
elements efficiently and then to exchange such a num-
ber of elements. More accurately, if we have to ex-—
change p (p = 0) elements between sequences u and v,
we move the p greatest elements from v to v and the
p smallest elements from v to u, where the exchange
of elements is realized by a rotation. Then by recursive
application of this technique to the arising subsequences
we get a sorted result. Fig. 1 illustrates this approach
to merging for our above example.

We will now focus on the process of determining the
number of elements to be exchanged. This number can
be determined by a process of symmetrical comparisons
of elements that happens according to the following
principle:

We start at the leftmost element in v and at the right—
most element in v and compare the elements at these
positions. We continue doing so by symmetrically com—
paring element-pairs from the outsides to the middle.
Fig. 1 b) shows the resulting pattern of mutual com-
parisons for our example. There can occur at most one
position, where the relation between the compared ele—-
ments alters from 'not greater’ to 'greater’. In Figure 1
b) two thick lines mark this position. These thick lines
determine the number of side-changing elements as
well as the bounds for the rotation mentioned above.
So far we introduced the computation of the number of
side-changing elements as linear process of symmetric
comparisons. But this computation may also happen in
the style of a binary search. Then only
[log(min (Jul,Jv]))] +1 comparisons are necessary to
compute the number of side-changing elements.

2.1 Formal Definition

Let v and v be two adjacent ascending sorted
sequences. We define v <v(u<wv) iff 2 <y (z<y)
for all elements x ©u and for all elements y < v.

We merge v and v as follows:

If lul < |vl, then

Decomposition of v
v

(al) ‘ i U1 w vy

[u| < [v]

C > Rotation

(ni})‘ up |uz } m

wil ws 3

Ct=3st AH O]

mc
]
o
0
ne
kI
n
il

Symmetric decomposition of u and w

2]

(a2) 2
[]

vy | wp|l we

i

Recursion 1 Recursion 2

(ad) Uy v Wy) wo U9

Decomposition of u
1

(b1)| w w uy v ‘

|z] > |v]

(@ > Rotation

(b3)

iy

wy | we

(1] Uy (22}

Symmetrie decomposition of v and w

(b2)| m wy | ws

Recursion 1 Recursion 2

(b4) uy wy

v | ws us)

Fig. 2. Illustration of SymMerge

(al) we decompose v into vwv, such that |wl=lul
and either [v,/=1v,| or lv,|=v[+1.

(a2) we decompose u into wyu, (luyl =0, luyl =0)
(k| =0, |w,)=0) such that

[yl = hoyl, fugl =ho,l and lu,l < hoyl, uy > w;.

and w into wyw,

(a3) we rotate uyv,w, to vyw u,.

(ad) we recursively merge u, with v,w, as well as
u, With wyv,. Let w’ and v" be the resulting sequences,
respectively.

else

(b1) we decompose v into u,wu, such that lw|=ll
and either |u,| = lu,| or |u,l=lu,|+1.

(b2) we decompose v into vv, (lvy] >0, lv,l > 0)
(lw| =0, |w,)>0) such that

[v1] = hwyl, [vgl =hwy| and ol < lvyl, wy > v;.

and w into wyw,

(b3) we rotate wyu,v, to vV Wyu,.

(b4) we recursively merge w,w; with v, as well as
wyu, With v,. Let w’ and v" be the resulting sequences,
respectively.

uw'v" then contains all elements of u and v in sorted
order.

Fig. 2 contains an accompanying graphical description
of the process described above. The steps (al) and (bl)
manage the situation of input sequences of different
length by cutting a subsection w in the middle of the
longer sequence as ‘‘active area’’. This active area has
the same size as the shorter of either input sequences.
The decomposition formulated by the steps (a2) and
(b2) can be achieved efficiently by applying the princi-
ple of the symmetric comparisons between the shorter
sequence u (or v) and the active area w. After the de-
composition step (a2) (or (b2)), the subsequence uyv,w,
(or wyuyv,) is rotated so that we get the subsequences

wvw, and u,w,v, (ww v, and wyug,).

In [11] we presented an implementation of the
SymMerge algorithm in Pseudocode which shows the
algorithm is easy to implement.

Stability

During the symmetric decomposition of v and w (w
and v) u; < w, and u, >w, (w; < v, and w, >wv;) al-
ways hold. The treatment of pairs of equal elements as
part of the “outer blocks” (uy, w, in (a2) and wy,v, in

(b2)) avoids the exchange of equal elements and so any
reordering of these. Hence the following corollary holds:

Corollary 2.1. SymMerge is stable.

Minimum Storage Property

The decomposition steps (al) and (a2) ((bl) and
(b2)) satisfy the properties |vl=,l or [vl+1=lv,,
|41 = luy,
lo;l = hwy| and hwy| =lv,l). Therefore the following corol-

fuyl = oyl and | =luy| (lug| =luyl or

lary holds:

Corollary 2.2. After applying the decomposition
steps (al) and (a2) (or (bl) and (b2)) it holds
b+ o [+l = L (ul+ o)) /2] and
gl 4 hwol oyl = T (ful+10l) /217 .

The following theorem holds trivially.

Theorem 2.3. The recursion-depth of SymMerge is
bounded by [log(m+n)].

Corollary 2.4. SymMerge is a minimum storage
algorithm.

457

Sha X SAIAEstE =&X| 2010, Vol. 20, No. 4

3. Worst Case Complexity regarding the
number of comparisons

We start this section with a short overview of the
proof’s structure. First we will divide the domain of all

(1,7,11),(1,2,5,6,8,12, 13)

/\ m=3n=7

(1),(1,2,5,6) (7,11),(8,12,13)

N

(7),(8) (11),(12,13)

(26,27, 28), (11,22, 23, 24,79)

/\m =3,n=|m|+3+ [l

(), (71,22, 23,24) (26,27, 28), (1) Ml = el
> i

(b)

Fig. 3. Examples

inputs into two disjoint classes (cases). For either of
these classes we will extract a special subclass and
prove the asymptotic optimality for these two
subclasses. Using this knowledge for special cases we
will prove the optimality for all remaining cases.

Unless stated otherwise, let us denote m =lul, n=vl,
m<n, m=2 i e. k=logm. Further let mj and nj
denote the sizes of sequences merged on the ith re—
cursion level where the index j denotes the order of the
merged sequences. Initially (on the recursion level 0), it
holds m{=m and n}=n. On the next recursion level

1, (mY,n)) is divided into two pairs (children nodes).

We denote these by (mj,n), (myny) where the se-

quences of lengths m! and mj are merged with the

sequences of lengths nl and n) respectively. On the

recursion level i, the sequences of lengths mi,mbmb,--

and m’7 are merged with the sequences of lengths
ni,mb,nk,--+ and né-
2< <2,

We divide the domain of all inputs into two disjoint
classes as follows:

respectively, where it holds

Case I - Every internal node (mz,nj) with mj >1 is

i+1 i+l
L) VAL

where it holds m}"' =1 and m’"' = 1. Further all in-
puts of size (1,n) for all n>1 belong to this class.
Case (a) of Fig. 3 shows such an example.

Case II - Complement of Case I; During the compu-

divided into two pairs (m and (mitnith)

)

tation, some node (mn}) with m/>1 is divided into

458

0 0

m(=mj) recursion level 0 ni=)
' /1\ 1 1 /\1
I(=mi)m — 1(=my) recursion level 1 L
A\ 2N
1 m—2 recursion level 2 ny nj
AN o ‘ F
{1 m-—3 recursion level 3 nt
A) 4
1 m-— 4 E nj r.";_,
1 1
I pd } .
1 m—(m—1) rec levelm—1 n{"= ny'"
Fig. 4. Maximum spanning case
il . . D
m(=1my) recursion group 0 n(=ny)
A oy X -
\ N
l=mhm—1(=md) rec gr. 1 nionl
\ < > A
I om -2 ny ni
N\ recursion group 2 2/ A\ N
1 m-=3 ng oy
. : N
N 3 N 3
1 m—4 ny n
A N
1 m-—5 s ny
AN recursion group 3 C LS \ \
1 m-—6 n: g
N\ ' 2 Ny

1 m—T ny Ny

recursion group k A/ \

1 m—(m— Tk Jngk

Fig. 5. Construction of recursion groups

i+1
J

i+1

i) i

i+1
j i)

two pairs (m and (m}"ny""), where
my"'=0 and m}"" =0. Case (b) of Fig. 3 shows such

an example.

First we show SymMerge performs O(mlog(n/m+1))
comparisons for case I.

Case I:
We begin by considering the complexity for a special

case called maximum spanning case. In this case (m,n)
is partitioned into (1(=m1),nl) and (m—1(=m3i),nd)
and each (mbmnb),i=1,2,--,m—2 is partitioned into

(1(=mi™),ni*) and (mh—1(=mi*t),nitt).

Subcase 1.1: Maximum spanning case
Figure 4 shows the partitioning for the maximum span-—
ning case. On the recursion level i, a sequence of

length mi =1 (m)=m—i) is merged with a sequence
of length ni(n}). Note that we need llogn’iJ +1 com-—
parisons for merging the sequences (pair) of lengths
(1,n}) completely. Further, by the merging method of

SymMerge, such a merging is done over several re—
cursion levels. However, for the convenience of com-
plexity analysis we will consider the overall number of

required comparisons [logni1 J +1 at once on each cor—
responding recursion level i.

(a)

m
H>
_o'E
kI
[>
o
o
mc
]
o
0
ne
kI
n
il

recursion group 0 (15,32) m =15,n =32
_____________________ (7.16) (8,16)
(3,8) (4,8) (1,11) (7,5)
T
4)(2,4)(2.4) (2,4)(5,1)
A----/—\----/-\ ----- A
(1,2) - 2 : (1,2)(1,2)
(b)

Fig. 6. Examples for partitioning the set of all merging pairs into k+1 groups

Theorem 3.1.
O(mlog(n/m+1))
spanning case.

Proof. The binary search of the recursion level 0 re—
quires | logm | +1 < log(m +n) comparisons. For the
recursion level 1 we need
llogn} J+1+ Llog(min{m;,n;}) J+1<2 « log((m+n)/2)
comparisons since L (m+n)/2] and
[(m+n)/2]1 by Corollary 2.2. Further it

holds for all i>1 each (min) is divided into two

(m§+17nz'1+1)

The SymMerge algorithm needs
comparisons for the maximum

m{ +n{ =
m% +n% =
and (mbi™'ni*') where it holds

it+1 i1 _
my tn, =

pairs
m’i“+n’i“: [(m’2+n’2)/2J and
[(m4+nj)/2] . Therefore the overall number of com-

parisons for all m levels does not exceed

m—1
log(m+n)+2 Y log((m-+n)/2") =log(m+n)+
i=1
m—1

2((m—1)log(m+n)— Y,i) =

i=1
Now we consider the complexity for case [in
general. Fig. 5 shows all m levels of the maximum
spanning case can be partitioned into k+1 recursion
groups, say recursion group 0, recursion group 1, ---,
recursion group k, so that each recursion group
i, (i=1,2,
we assume m =2" ie. k=logm). Note that if m =2*
then m—1=2"+2'+22 44251 =204 9l ... glosm~1,
Accordingly we get the following corollary:

O(mlog(n/m+1)).

k) comprises 27! recursion levels (Here,

Corollary 3.2. For the maximum spanning case each
recursion group i, (i =0,1,2,---,k) covers 2' merging
pairs (nodes).

There is a further special case where each merging
pair (subsequence merging) always triggers two non-
empty merging pairs. In this case each recursion group
i 1s exactly equal to the recursion level i. Therefore re—
cursion groups and recursion levels are identical. Case
(a) of Fig. 6 shows such an example. Eventually, be-
cause of the condition of case I that every internal node

(m],n]) with m§->1 is divided into two pairs

(m7.,+1,n7J+1) 17,_”+17n;”+1)’ with m';“Zl and

ing and (m

m;,,“ > 1, we can always construct k+1 recursion

groups so that each recursion group %, ¢=0,1,2,---k
covers at most 2' pairs. Thus the following theorem
holds:

Theorem 3.3. For case I the SymMerge algorithm
needs O(mlog(n/m+1)) comparisons.

Proof. For any input (u,v) in case I, let .S be the set
consisting of all merging pairs (nodes) which arise dur—
ing the computation. Then .S can be partitioned into
k+1 recursion groups such that each recursion group i,
i=0,1,2,--- k has at most 2! pairs and needs at most
200g((m+n)/2") comparisons. Hence for all levels, the

required number of comparisons is less than
k

22’log m+n)/2") = Z

i=0 =

(log(m+n))—1)

= O(mlog(n/m+1)) since Zizi = (k—1)28""+2.

i=0

Case II: Complement of Case I
Now we investigate the worst case complexity for case
II. We can state and prove the following basic results:

[logmw {mmw
Lemma 3.4. Any node (mj "on m 1) on
; n+m o
the recursion level "log w satisfies
logM]Ogm
SIS

Proof. As shown in Corollary 2.2, each call of the
SymMerge decomposes the input sequence into two

output subsequences with equal size. Therefore
{log n+m w [log n+m w {l n+m w

m; mol 4 n, m < (n+m)/2 m <m.
Lemma 35 If m=2" then Lllogm]+1+

i) [logm! | +1)+i](tlogmj+1)+

E logm® | +1) = O(m).

Proof

459

Sha X SAIAEstE =&X| 2010, Vol. 20, No. 4

2 2
llong+1+2([10gm E 10gm +1)

j=1 j=1

N i}l(Llogmt | +1) < 2(2

J « log e 497) = 4m
i=0 ?

j
—logm—3=0(m).

Similar to case I, we consider a special case, here the
case u<wv or v<u, le. the merging represents the
identity or a simple block rotation from uv to vu.

Subcase II.1: Case of u<wv or v<u (identity or
block rotation)
Since both cases have the same complexity, without
loss of generality we assume u <wv. To get the result
vu, on the recursion level 1 it has to hold mi =0,
_ 1_ n m 1_ n m
my=m, ny = {5+7J, ny = {5—?w If
my < ny, on the next recursion level we get m}=0,
. 1 1 m
m§=m, nj = {gn%-l-?J . ny = {5n§—7} . For
the recursion level i, m} has to be equal to m so long

as we have m =mi ' < n) '. Accordingly, we get the
followings:

Theorem 3.6. Let vu be the merged result of the in—
put wv. Then the SymMerge algorithm needs
O(mlog(n/m+1)) comparisons until reaching the re-
n+m w

cursion level {log
Proof. Every recursive call up to the recursion level
n

{ log

Thus the overall number of comparisons until reaching
the maximal indivisible depth of m is (llogm | +1)

({log }) =0(logmlog(n/m+1))

m } requires llogm] +1 comparisons.

n+m

Theorem 3.7. Let vu be the merged result of the in-

put wv. Then the SymMerge algorithm needs

O((logm)?) comparisons for merging the sequences on
. n+m

the recursion level {log w .

Proof. By Corollary 2.2 and 3.4 the recursion depth of
n+m w i

the sequences on the recursion level {log

bounded by [logm 1. On each recursion level the
number of required comparisons is less than
(Llogm | +1). Thus the overall number of required
comparisons is less than [logm] » (llogm |

+1) = O0((logm)?).

Accordingly, by Theorem 3.6 and Theorem 3.7 the
following corollary holds:

Corollary 3.8. Let vu (or uv) be the merged result

460

of the input wv. Then the SymMerge algorithm needs
O(logmlog(n/m+1)) comparisons for n > m(m—1)
and O((logm)?) comparisons otherwise.

Now we consider the complexity for case I/ in
general. In this case we can always divide all merged

pairs (internal nodes) (m],nj) generated during the

computation into two disjoint parts; part (a) consisting
of all nodes (m;m;) with m; =1 and all nodes (mg,n;)
i'+1 iJ+1)

PR

(m}“m}“) with mj-rﬂ >0 and mj»“ > 0, part (b) con-

which are partitioned into two nodes (m and

sisting of all remaining nodes (m/,n}), mj =2 which is

J
partitioned into two nodes (m’"',n’"") and (m%"'n}"")

7+1 1+1 =0

with m%"™ =0 or mj
In subcase L1 (case of u<wv or v<uw), all merged
pairs (nodes) occurring during the computation belong
to only part (b). As already shown in Theorem 3.6 and

Theorem 3.7 it needs less than (llogmJ+1)
({logn;;m })+ [logm 1 » (Llogm | +1)=0(m

log(n/m+1)) comparisons.
Now, for better understanding the complexity analy-
sis, we consider an additional case that is similar to
case IL1. The case is described as follows: (m,n) is
partitioned into (mi,n;) and (mgny) with mj > 1,
mé > 1 and the remaining computations of the both no-
des (ml;nl) and (ms,ns) correspond to the identity or
block rotation. In this case, except of the node belong—
ing to the recursion level 0, ie. (m,n), all remaining
nodes belong to part (b). Similar to subcase 1.1, we can
analyze the complexity for part (b) of this case. So, it
n+m
m

needs less than { log } e (LlogmJ+1

2‘2

é logm +1)+Z(llogm | +1)). Further by

i=1

Lemma 35 it holds { log ntm w .

2 2
(llong—l—l—i-Z(Llogm Z logm +1))

Jj=1 J:1

< {logn_'—m w « (Llogm | +1+Z(logm! | +1)
m i1
2 k
+33([logm? | +1)) +- +Z logm! | +1))
j=1 j=1

= O(mlog(n/m+1)) comparisons.

Theorem 3.9. For case II the SymMerge algorithm
needs O(mlog(n/m+1)) comparisons.

Proof. First we divide all internal nodes of any com-
putation of case II into two disjoint parts; part (a) and
part (b). By Theorem 3.3, part (a) can be partitioned
into at most k-+1 recursion groups such that each re-

cursion group i,4=0,1,2,---,k covers at most 2' pairs

and needs at most 2'log((m+n)/2") comparisons.
Hence the complexity for part (a) is bounded by
O(mlog(n/m+1)). Now we consider the required
number of comparisons for part (b). The set of all no—
des belonging to part (b) is a proper subset of some set
{(m.n),(mln}),(mind),(min?), . (mbnk), -} where
it holds m; >0 for all 4 and j. Thus the number of all
required comparisons for part (b) does not exceed

n+m
{log

w e (Llogm | +1+i([10gm;J +1)

2’ 2
+ 3 [1ogm? | +1) 4+ (L logm"] +1))
j=1 j=1
= O(mlog(n/m+1)) by Lemma 3.4 and Lemma 35.

Hence we conclude the following corollary by
Theorem 3.3 and Theorem 3.9.

Corollary 3.10. The SymMerge algorithm is asymp-—
totically optimal regardingthe number of comparisons.

4. Experimental Work

As already shown in [11], we did some benchmarking
with the unfolded version of the SymMerge algorithm
and compared it with the implementations of three other
merging algorithms. As first competitor we chose the
merge_without_buffer-function contained in the C++
Standard Template Libraries (STL) [12]. The second
competitor was taken from [13]. As third competitor we
took the classical standard algorithm. The result of our
evaluation has shown that the SymMerge algorithm is
very efficient and so might be of high practical interest.

5. Conclusion

We proved that the SymMerge algorithm is asymp-
totically optimal regarding the number of comparisons.
The proof gained its simplicity from the special charac-
teristic of the SymMerge algorithm to map a merging
of size I(l=m+n) always to two mergings of size
1/2. This “even splitting” is an interesting property of
its own, it allows e.g. even load balancing in the con-—
text of parallel architectures. By repeatedly evenly
splitting the input, the task of merging can be dis-
tributed over several processing units without disturb-
ing the overall asymptotic optimality regarding
comparisons.

References

[1] D. E. Knuth, 7he Art of Computer Programming,
Addison-Wesley, Vol. 3¢ Sorting and Searching,

(2]

[3]
[4]

[5]

[6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

m
H>
_o'E
kI
[>
o
o
mc
]
o
0
ne
kI
n
il

1973.

K. Dudzinski and A. Dydek. “On a stable stor—
age merging algorithm.” /nformation Processing
Letters, Vol. 12, pp. 5-8, February 1981.

A. Symvonis, “Optimal stable merging,”
Computer Journal, Vol. 38, pp. 681-690, 1995.

V. Geffert, J. Katajainen and T. Pasanen,
“Asymptotically efficient in-place merging,”
Theoretical Computer Science, Vol. 237, No. 1/2,
pp. 159-181, 2000.

J. Chen. "Optimizing stable in-place merging,”
Theoretical Computer Science, Vol. 302, No. 1/3,
pp. 191-210, 2003.

P. S. Kim and A. Kutzner, “On Optimal and
Efficient in-Place Merging,” SOFSEM 2006,
Lecture Notes in Computer Science, Springer,
Vol. 3831, pp. 350-359, 2006.

P. S. Kim and A. Kutzner, “Ratio Based Stable
in-Place Merging,” TAMC 2008, Lecture Notes
in Computer Science, Springer, Vol. 4978, pp.
246-257, 2008.

M. A. Kronrod, “An optimal ordering algorithm
without a field operation,” Dokiadi Akad Nauk
SSSR, Vol. 186, pp. 1256-1258, 1969.

H. Mannila and E. Ukkonen, “A simple line-
ar-time algorithm for in situ merging,”
Information Processing Letters, Vol. 18, pp.
203-208, 1984.

F. Hwang and S. Lin, “A simple algorithm for
merging two disjoint linearly ordered sets,”
SIAM J. Comput, Vol. 1, no. 1, pp. 31-39, 1972.
P. S. Kim and A. Kutzner, “Stable Minimum
Storage Merging by Symmetric Comparisons,”
ESA 2004, Lecture Notes in Computer Science,
Springer, Vol. 3221, pp. 714-723, 2004.
C++ Standard Template
“http://www.sgi.com/tech/stl.”

K. Mgllerhgj AND C.U. Sgttrup, “Undersggelse
og implementation af effektiv inplace merge,”
tech. rep, CPH STL Reports 2002-06,
Department of Computer Science, University of
Copenhagen, Denmark, June 2002.

Library,

X AR & N

=M (Pok-Son Kim)
SR A 2288k E] FH o] AL

A7) Srvsta feke) P

461

Sha X SAIAEstE =&X| 2010, Vol. 20, No. 4

F x4 ot (Arne Kutzner)
199943 : 5 University of Frankfurt
A gy Feakal
2001 : ¢ Dresdner 23}
2002 : DLogistics Korea ©Zo]A}
20031 ~2008\d : A7t Etal A=A 22
g
2009 ~ &A= ghFistal A 3o
AR A 2~E 8t} K

)0 : Algorithm, Algorithm Engineering,
Programming Languages
E-mail :kutzner@hanyang.ac.kr

462

