• Title/Summary/Keyword: Asymmetric source-drain MOSFET

Search Result 14, Processing Time 0.018 seconds

Analysis for Potential Distribution of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.691-694
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as charge distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

  • PDF

A Novel External Resistance Method for Extraction of Accurate Effective Channel Carrier Mobility and Separated Parasitic Source/Drain Resistances in Submicron n-channel LDD MOSFET's (새로운 ERM-방법에 의한 미세구조 N-채널 MOSFET의 유효 캐리어 이동도와 소스 및 드레인 기생저항의 정확한 분리 추출)

  • Kim, Hyun-Chang;Cho, Su-Dong;Song, Sang-Jun;Kim, Dea-Jeong;Kim, Dong-Myong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.1-9
    • /
    • 2000
  • A new method, the external resistance method (ERM method), is proposed for accurate extraction of the gate bias-dependent effective channel carrier mobility (${\mu}_{eff}$) and separated parasitic source/drain resistances ($R_S$ and $R_D$) of n-channel MOSFET's. The proposed ERM method is applied to n-channel LDD MOSFETs with two different gate lengths ($W_m/L_m=30{\mu}m/0.6{\mu}m,\;30{\mu}m/1{\mu}m$) in the linear mode of current-voltage characteristics ($I_D-V_{GS},\;V_{DS}$). We also considered gate voltage dependence of separated $R_2$ and $R_D$ in the accurate modeling and extraction of effective channel carrier mobility. Good agreement of experimental data is observed in submicron n-channel LDD MOSFETs. Combining with capacitance-voltage characteristics, the ERM method is expected to be very useful for accurate and efficient extraction of ${\mu}_{eff},\;R_D,\;R_S$, and other characteristic parameters in both symmetric and asymmetric structure MOSFET's in which parasitic resistances are critical to the improvement of high speed performance and reliability.

  • PDF

A New Asymmetric SOI Device Structure for High Current Drivability and Suppression of Degradation in Source-Drain Breakdown Voltage (전류구동 능력 향상과 항복전압 감소를 줄이기 위한 새로운 비대칭 SOI 소자)

  • 이원석;송영두;정승주;고봉균;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.918-921
    • /
    • 1999
  • The breakdown voltage in fully depleted SOI N-MOSFET’s have been studied over a wide range of film thicknesses, channel doping, and channel lengths. An asynmmetric Source/Drain SOI technology is proposed, which having the advantages of Normal LDD SOI(Silicon-On-Insulator) for breakdown voltage and gives a high drivability of LDD SOI without sacrificings hot carrier immunity The two-dimensional simulations have been used to investigate the breakdown behavior in these device. It is found that the breakdown voltage(BVds) is almost same with high current drivability as that in Normal LDD SOI device structure.

  • PDF

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.