• 제목/요약/키워드: Assumed modes

검색결과 228건 처리시간 0.023초

엔진 및 프로펠러에 의해 가진되는 소형 위그선 복합재 주날개의 진동 거동 해석 (Investigation on Forced Vibration Behavior of Composite Main Wing Structure of A Small Scale WIG Craft Excited by Engine and Propeller)

  • 공창덕;윤재휘;박현범
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.1028-1035
    • /
    • 2007
  • 논문에서는 시험선인 소형 위그선의 주날개 구조를 엔진 및 프로펠러에 의해 유발되는 진동을 가진력으로 하여 강제진동 해석을 수행하였다. 대상 위그선은 2행정의 왕복엔진을 날개에 장착하여 프로펠러에 의한 추력으로 비행하며, 미는 형식(Pusher Type)의 엔진 배열을 취하고 있다. 유한요소해석을 위해서 구조해석 상용프로그램인 MSC/NASTRAN을 사용하였으며, 엔진의 주요 진동 특성인 H-mode 와 V-mode 그리고 X-mode를 특정 가진 주파수로 하여 주파수 응답 해석을 수행하였고, 엔진의 횡방향 진동 모드인 L-mode를 프로펠러의 회전에 의해 진동을 수반하는 가진 추력으로 가정하여 과도응답 해석을 수행한 후 날개의 진동 특성을 살펴보았다.

형상불완전을 갖는 평면 원호 아치의 동적 거동 (Dynamic Behavior of the Plane Circular Arches with the Shape Imperfections)

  • 조진구
    • 한국농공학회지
    • /
    • 제43권3호
    • /
    • pp.85-93
    • /
    • 2001
  • In this study, a computer program considering shape imperfections of arch under dynamic loading was developed. The shape imperfection of arch was assumed as higher degree polynomial expressed as $\omega$$_{i}$ = $\omega$$_{o}$ (1-(2$\chi$/L)$^{m}$ )$^n$and sinusoidal curve such as $\omega$$_{i}$ = $\omega$$_{o}$ sin(η$\pi$$\chi$/L). In finite element formulation, the material nonlinear behavior was assumed the elasto-viscoplastic model highly corresponding to the real behavior of the material and the geometrically nonlinear behavior was modeled using Lagrangian description of motion. Also, the behavior of steel was modeled by applying yield criteria of Von Mises. The developed program was applied to the analysis of the dynamic behavior for the clamped beam subjected to the concentrated load at midspan and the results were compared with those from other research to investigate accuracy of the presented finite element program. In numerical examples, the shape imperfections of L/500, L/1,000 and L/2,000 were considered and the modes of shape imperfections of the symmetric and antisymmetric were adopted. The effects of the shape imperfections on the dynamic behavior of arch were conspicuous and results of analysis indicate that the reasonable values of arch rise to arch span ratio ranged between 0.1 and 0.3.

  • PDF

비선형 피로손상 모델을 이용한 복합재 피로수명 평가 (Composites Fatigue Life Evaluation based on non-linear fatigue damage model)

  • 김성준;황인희
    • Composites Research
    • /
    • 제16권1호
    • /
    • pp.13-18
    • /
    • 2003
  • 복합재료의 피로수명을 평가하는 것은 여러 가지 파손모드와 파손모드 간의 강호작용 때문에 복잡하다. 본 논문에서는 현상론적인 모델(비선형 강도저하 모델)을 이용하여 피로수명과 잔류강도를 예측할 수 있는 방법을 제시하였다. 잔류강도를 하중 사이클 수와 피로응력의 함수로 가정하였으며, 계산에 필요한 모델변수(강도저하 파라미터, 피로수명형상 파라미터)를 피로수명의 함수로 가정하였다 임의로 배열된 하중 스펙트럼 상에서 응력수준에 따른 모델 매개변수를 구하기 위해 S-N 선도를 이용하였고, 상이한 응력비에 대하여 전술한 매개변수를 Goodman식의 보정을 통하여 계산하였다(피로선도). 임의의 하중이력 후의 잔여강도 분포를 2모수 weibull 함수로 표현하였다.

Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach

  • Akbarov, Surkay D.;Guliyev, Hatam H.;Yahnioglu, Nazmiye
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.239-263
    • /
    • 2016
  • The paper studies the natural oscillation of the three-layered solid sphere with a middle layer made of Functionally Graded Material (FGM). It is assumed that the materials of the core and outer layer of the sphere are homogeneous and isotropic elastic. The three-dimensional exact equations and relations of linear elastodynamics are employed for the investigations. The discrete-analytical method proposed by the first author in his earlier works is applied for solution of the corresponding eigenvalue problem. It is assumed that the modulus of elasticity, Poisson's ratio and density of the middle-layer material vary continuously through the inward radial direction according to power law distribution. Numerical results on the natural frequencies related to the torsional and spheroidal oscillation modes are presented and discussed. In particular, it is established that the increase of the modulus of elasticity (mass density) in the inward radial direction causes an increase (a decrease) in the values of the natural frequencies.

소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석 (Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive)

  • 이성진;홍순교;정영민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

Recovering structural displacements and velocities from acceleration measurements

  • Ma, T.W.;Bell, M.;Lu, W.;Xu, N.S.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.191-207
    • /
    • 2014
  • In this research, an internal model based method is proposed to estimate the structural displacements and velocities under ambient excitation using only acceleration measurements. The structural response is assumed to be within the linear range. The excitation is assumed to be with zero mean and relatively broad bandwidth such that at least one of the fundamental modes of the structure is excited and dominates in the response. Using the structural modal parameters and partial knowledge of the bandwidth of the excitation, the internal models of the structure and the excitation can be respectively established, which can be used to form an autonomous state-space representation of the system. It is shown that structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations only. Reliable estimates of structural displacements and velocities are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulations on an eight-story lumped mass model and experimental data of a three-story frame excited by the ground accelerations of actual earthquake records.

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

수직면에서 회전운동을 하는 탄성로봇의 PID 제어 (PID Control of a flexible robot rotating in vertical plane)

  • 강준원;오재윤;김기호
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF

Optimal Design of a High-Agility Satellite with Composite Solar Panels

  • Kim, Yongha;Kim, Myungjun;Kim, Pyeunghwa;Kim, Hwiyeop;Park, Jungsun;Roh, Jin-Ho;Bae, Jaesung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.476-490
    • /
    • 2016
  • This paper defines mode shape function of a composite solar panel assumed as Kirchhoff-Love plate for considering a torsional mode of composite solar panel. It then goes on to define dynamic model of a high-agility satellite considering the flexibility of composite solar panel as well as stiffness of a solar panel's hinge using Lagrange's theorem, Ritz method and the mode shape function. Furthermore, this paper verifies the validity of dynamic model by comparing numerical results from the finite element analysis. In addition, this paper performs a dynamic response analysis of a rigid satellite which includes only natural modes for solar panel's hinges and a flexible satellite which includes not only natural modes of solar panel's hinges, but also structural modes of composite solar panels. According to the results, we confirm that the torsional mode of solar panel should be considered for the structural design of high-agility satellite. Finally, we performed optimization of high-agility satellite for minimizing mass with solar panel's area limit using the defined dynamic model. Consequently, we observed that the defined dynamic model for a high-agility satellite and result of the optimal design are very useful not only because of their optimal structural design but also because of the dynamic analysis of the satellite.

고속선(高速船) 선체고유상하진동(船體固有上下振動)의 초기추정(初期推定) 방법(方法) (A Method for the Preliminary Estimation of Vertical Natural Vibations of High Speed Boats)

  • 김극천;김학빈
    • 대한조선학회지
    • /
    • 제17권1호
    • /
    • pp.25-29
    • /
    • 1980
  • For the preliminary estimation of the vertical hull natural frequency, the Schlick's or Schlick-type formulae have been traditional ones and are still in common use today. Some investigators have made their efforts, based on statistical data of ships' system parameters, to extend the applicability of Schlick-type formulae to higher modes, or to utilize the Rayleigh method. For instance, the work done by Dinsenbacher et al.[5] belongs to the former and that of Nagamoto et al.[6] to the latter. In a part of his previous paper[7], the author, investigating the case of a cargo ship of medium size, suggested that provided statistically simplified curves such as trapezoid of system parameter distributions are available in hands, direct utlization of an ordinary computer program can be also an another convenient method by which we can obtain both natural frequencies and normal mode shapes. In this paper, to confirm the feasibility of the above suggestion, four high speed boats are investigated. The system parameters of them are originally given in [5]. The computer program used here is one confiled based on a calculation method derived from Myklestal-Prohl modeling of hull, transfer matrix formulation and an extended Gumbel's initial value method for solving frequency equation. The results of the investigation show that the direct calculation based on statistically oriented and reasonably assumed trapezoidal mean curves of system parameter distributions can give us natural frequencies within about 5% deviation up to several-noded modes and normal mode shapes serviceable at least up to 4- or 5-noded modes in comparision with those based on actual distributions of system parameters. For this simplified method the actual data required for input are only of ship length, displacement, total added mass, bending and shear rigidity at amidship. They are available at the early stage of design. By this method we can also easily trace variations of vibration characteristics in the course of ship design cycles.

  • PDF