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Dynamic Analysis of the Effect of Base Flexibility on a Spinning
Disk Dynamics in a Small Size Disk Drive
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Abstract

Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A
simplified model was presented considering the effects of the baseplate flexibility on a disk/spindie system, and the
equations of motion were derived by the assumed mode method and Lagrange’s equation. From the results of the free
vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate
thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the

baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity
of the simplified mode! was verified by experiments and FE analysis.

1. Introduction

It is very important to analyze the dynamic
characteristics of a spinning disk in recording/storage
systems, e.g., floppy disk, hard disk, CD-ROM disk and
digital video disk (DVD). Especially, in the small form
factor design of a storage device, it’s very difficult to
keep the rigidity of a housing structure like a baseplate.
The presence of a stationary baseplate has caused the
dynamic coupling with the modes of a disk/spindle
system. The dynamic coupling phenomena make a
change the characteristics of the flexible disk/spindle
system. In order to read and write the information
quickly and exactly, even under larger storage density, it
is highly demanded to predict and analyze the vibration
characteristics of the spinning disk.

Numerous studies have been reviewed in the fields of
free vibration, critical speed, dynamic response and
stability of the spinning disk, and a number of researches
have been performed for the flexible disk with a flexible
shaft and blades [1-2]. Also, a spindle motor consists of a
vertical shaft and two deep-groove ball bearings partially
filled with grease. Balls are not perfectly round and both
balls and races deform slightly under the pre-load. These
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factors caused the spindle to generate randomly or non-
repeatable run-out at bearing defect frequencies [3]. A
theoretical model for single disk and rigid spindle motor
with the flexible disk and the bearing was presented by
Ku and Shen [4].

In spite of many previous studies, a theoretical model
for a spinning flexible disk/spindle system mounted on a
flexible baseplate have not been presented yet. The
theoretical model should identify the behaviors of a
spinning flexible disk/spindle system interacting with a
flexible baseplate. The analysis about the effects of a
flexible baseplate dynamics on a spinning disk/spindle
system dynamics should become more important in small
size storage device design.

In this paper, a simplified model is presented for a
single disk and rigid spindle motor mounted on a
baseplate considering the disk and baseplate flexibility.
The free vibration analysis of these systems is explored.
The system is modeled as follows. Firstly, a disk is
clamped to a rigid spindle, and the spindle is attached to
a rigid shaft with the radial, axial, and torsional
supported springs and dampers. These values were tuned
by FE analyses and experiments. Secondly, the bottom of
the rigid shaft is fixed at a point on a flexible baseplate.
In order to derive the equations of motion, total potential
and kinetic energies are calculated by summing the
potential and kinetic energies of each substructure and
the joint part. It is assumed that the flexible motions of
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the disk and the baseplate are approximated by the
superposition of the comparison functions. The
discretized total potential and kinetic energies are
represented by substituting the assumed modes of the
disk and the baseplate into the total potential and kinetic
energies. By Lagrange’s equation, the equations of
motion are derived. From free vibration analysis, the
natural frequencies are calculated, and the coupling is
shown between the flexible modes of each spinning
disk/spindle and baseplate.

The proposed simplified model is used to predict the
dynamic characteristics of a small size storage device.
The validity of the model is verified by experiments and
FE analysis. Also, the effects of baseplate dynamics on
the natural frequencies of the system are explored.

2. The Simplified Modeling of the System

A simplified model of a disk-rotor-bearing system is
shown in Figure 1 {a). However, in order to model the
spinning flexible disk/spindle system mounted on a
baseplate, another model should be needed as shown in
Figure 1 (b). The spindle motor is supported with two
bearings, and these bearings are modeled as springs with
the axial, radial and torsional stiffhesses.

Rigid Beam ko by
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ky : Radial stiffness

Flexible Disk

¢z . Axial damping coefficient ds!
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Figure 1: (a) A lumped model of a disk-}otor-bearing
system, and (b) schematic of a flexible disk/spindle
system mounted on a baseplate.

The torsional stiffness in bearings is determined by
geometric relation as:

k =k (a2 +d2) M
where, d, and d, are the distances from the center of
gravity to each bearing, respectively.

The flexible disk is clamped to a rigid spindle at the
inner radius (a, see Figure 3) and it moves freely at the
outer radius (b, see Figure 3). The rigid spindle is
connected to a rigid beam with a torsional spring (&), an
axial spring (.), a radial spring (k.), a torsional damper
{ce), an axial damper (c,) and a radial damper (c,). The
spindle system is a 5 degrees-of-freedom, and the
variables are xg, ys, zs, 0,, and 0,, as shown in Figure 2.

The motion of the spinning disk is described in two
coordinate systems: Oy-x;,z; and Oy-X,Y,Z, (see Figure
3). The O)-xyy,2; is a local coordinate system, while the
0,-X1Y1Z, is an inertial reference system. The transverse
deflection of the disk (wp) is defined about the local O,-
X277 system. The disk rotates about the O,z;-axis with
the constant spinning speed (Q).

Figure 3: Schemetic of coordinate system of a disk.

2.1 Potential Energy

In order to obtain the total kinetic and potential
energies, the whole system was divided into two
substructures like the baseplate and the disk/spindle. The
total potential energy of the spinning disk/spindle system
mounted on a baseplate was calculated by summing the
strain energy of the disk and the baseplate, and the
potential energy of joint stiffness between the rigid beam
and the spindle. The strain energy of the baseplate was
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derived by Kirchhoff plate theory as the following:
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where, w,, D,, E,, h, and v, are transverse

displacement, flexural rigidity, Young’s
thickness and Poisson’s ratio, respectively.

The strain energy of the spinning disk was calculated
under assuming the thickness being small. Also, It was
assumed that in-plane deflections were steady and
axisymmetric. The strain energy of the spinning disk was
derived by Von Karman strain theory and the stress-
strain relations for a homogeneous elastic Hookean
material [5] as:
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where, w,, D,, v,, Q" and gl are the transverse
displacement, the flexural rigidity, the Poisson’s ratio,
and linearized internal forces per unit length in the
middle surface, respectively. QM and Qi are

produced by the centrifugal effect of a spinning disk, and
uniquely determined by the ordinary differential equation
derived by Hamilton’s principle as:

modulus,

sin jin _ l/n
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where, u,, E, and Ji, are the radial displacement in

the middle surface, Young’s modulus, and the thickness,
respectively.

The potential energy of joint part between the rigid
beam and the spindle is expressed as:
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where, £ and ¢ are the distances at a fixed point @ on the
baseplate(see Figure 1), and / is the distance from the

baseplate to the center of mass of the disk/spindle system.

2.2 Kinetic Energy
Firstly, the kinetic energy of the base plate is
expressed as:

2
- odh Jul.. J'L,(a_wli ) dxdy ©®)
o ket

where, p, and is the density of a baseplate.

Also, the kinetic energy of the disk was calculated.
The velocity in an arbitrary point of the disk is shown as:
V=V-2y (10)
where, v is the angular velocity vector at a point in the
middle surface, and WV is the linear velocity vector at a
point in the middle plane as [5]:

V=i, +iey +Je, +lpe, +Qe, x r+(9"exl +éyey:) xr(11)
r={r+ u,y)(cose e, +sin® ev__) (12)
where, Qis the rotating speed, e e and e, are

the unit vectors in the X, Y, and Z directions, and

e e, and e, are the unit vectors in the x,, y, and

z, directions, respectively. The relations of these two
sets of the unit vectors are represented by:

cos§, 0 sing, |1 0 0 e,
€x, ¥ y ) 32 (1 3)
e = 0 1 0 |0 cosb, -sind, e,
€, —sinB, 0 cosb, |0 sinO, cosb, |le,

Since the thickness of the disk is small, the kinetic
energy of the disk is simplified as:

_1 T 14
TD~§pDhD_C Lv~v rdrdf (14

where, p, and is the density of the disk.

Finally, the kinetic energy of the spindle is expressed
as:

o= g0 ) (R0 e pmfest 5 +57) (19

where, m; and /; are the mass and the mass moment of
inertia, respectively. In equations (14) and (15), higher
order nonlinear terms are neglected, because u,, w,,

Xs» Ys» Zg> O, and g are small.

2.3 Discretization

The motion of each substructure can be shown
approximately by the superposition of the comparison
functions. The rigid body motion of the spindle is a five
degrees-of-freedom system as:

q5=[25 X5 Ys 8, eu/T (16)

The deflection of the baseplate is represented in terms
of the comparison functions, which are the mode shapes
of a simple uniform rectangular plate with simply
supported boundary conditions:

z z B,,,,,(t)smmnx in Y a7
m=1 n=1 Lb
55

CI)B:[sinTL%tsin:—f— sinZI: sm% ] (18)

9= =[ Bu(t) Ba(t) ]T
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where, @, is the row vector relating the comparison
functions to describe the baseplate motion and q, is

the column vector relating the
generalized coordinates.

The deflection of the disk is also expressed in terms
of the comparison functions. They are satisfied with
clamped boundary condition at the inner radius a, and
free at the outer radius b and normalization condition.
Generally, for the stationary disk, the natural frequencies
of the modes with one or more nodal circles are larger
than those of modes with zero nodal circle and even with
three or four nodal circles. That is why the analysis
includes the only mode with zero nodal circle in this
paper. The transverse deflection of the flexible disk is
expressed as:

time-dependent

wp(r.0,t)= Z:;‘[C,, (t)cosnd +5,(t)sinnb R, (r) (19)
=®pqp
@5 =[R(r) cosB R (r) sind R(r) --] 20)

9o :[Co(t) C(t) S() ]T
R"(r) = (r —a)z(oc"+lc"r+zcnr1)
where, N is the total number of nodal circles. o€n? 1En

and . are determined by the natural boundary

conditions and the normalized condition[5].

By substituting equations (16), (17) and (19) into
equations (2), (4), (8), (9), (14) and (15), the discretized
total energy functions are as:

U=U,+U,+U, 2y
T=T,+T,+1 22)

2.4  Equations of Motion

The total kinetic and potential energies are expressed
in terms of a number of generalized coordinates. The
equations of motion of the spinning disk/spindle system
mounted on a baseplate are derived by Lagrange’s
equation as:
i[a(r—u)]_a(r—u)
dt\ 84, 24,
where, g, and E,

23

I

are the independent generalized
coordinates and the nonconservative generalized forces
including viscous damping, respectively:
q =[‘71 424 ]T =[qDT qu qBT]T 24)
E= 5] =-Cq 2%
where, C, is an equivalent damping matrix.

By substituting equations (21) and (22) into equation

(23), the equations of motion are finally obtained as
matrix forms.

M{i+Cq+Kq=0 (26)

where,
M, (ML) 0
M=|M;, M;+M;
0 0 M,
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3. Simulation Results

3.1 Estimations of System Parameters

The simplified model presented in Chapter 2 was
applied to a real product of small size optical storage
device, and the variations of the natural frequencies were
investigated by changing design parameters. Firstly, in
order to calculate the system parameters being used in
the simplified model and verify the results of the
simulations, the experiments with impulse tests and FEM
were performed for single disk/DC spindle motor system
mounted on a baseplate. A capacitance typed gap sensor
was evaluated for measuring the deflection of the disk,
and the smallest and lightest B&K accelerometer was
evaluated for modal analysis to minimize the influence
on the system. Also, a small sized impulse hammer was
used for excitation, because the experimental object was
small sized and light weighted, and it could be excited to
higher frequency range beyond 7,000 Hz. Dytran
5800SL was evaluated for this purpose. Hewlett Packard
FFT analyzer was used for calculating frequency
response function.

The baseplate was used for the stator of the motor in
itself. Two long side of the baseplate was fixed to a rigid
ground with experimental jigs. The speed of the motor
was adjustable and controlled by an electronic driver
board.

Table 1: Properties and values of single disk-motor
system.

Properties Values
Inner radius
Outer radius 3.3 (mm)
. 23 (mm)
Thickness
Disk | density 0.6 (mm)
1200 (Kg/m’)
poisson’ s ratio 03
young’ s modulus 2.5.(GPa)
Total Mass 5.96 (g)
Rotor Total Transverse mass 0.327 (Kg-mm?)
moment of inertia
Bearing span 2.6 (mm)
Bearing | Rdial stiffness 7.6x10° (N/m)
Carng | axial stiffness 6.27x10° (N/m)
Torsional stiffness 25.7 (N-m/radian)

The torsional stiffness of the bearing, ks was

calculated to be 25.7 N-m/radian by equation (1). The
axial and torsional bearing stiffness was tuned by
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comparing FE analysis results with experimental results.
The properties of the used single disk/motor system and
baseplate are shown in Tables 1 and 2.

Table 2: Properties and values of baseplate.

Properties Values

L, 74 (mm)
L, ] 53 (mm)
pp | Density 8200 (Kg/m®)
\Z: Poisson’ s ratio 03
Ep Young modulus 210 (GPa)
£ 27 (mm)

Connecting position 1
- Lb

g 2
hg Thickness 0.4 mm

3.2  Simulation Results

Before performing the simulations of the system, the
system parameters were chosen as in Tables 1 and 2.
Commercial programs like Mathematica, MATLAB and
ANSYS were used for the simulations.

The results of the simulations and the experiments for
the baseplate and the disk are shown in Table 3. The long
sides of the baseplate were clamped, and the inner radius
of the disk was also clamped. The simulations agree well
with the experiments. The variations of the natural
frequencies by changing the rotating speeds are shown in
Figure 4. From these comparisons, the validity of a
simplified model in this paper was verified.

Table 3 (a): Natural frequencies of a disk at Q = 0.

Natural Frequencies (Hz)
Mode
Analytical FEM Experiment
0,1 425 427 418
0,0) 443 448 450
0,2) 543 541 536
0.3) 993 994 978

Table 3 (b): Natural frequencies of a baseplate at Q = 0.
Natural Frequencies (Hz)

Mode

Analytical FEM Experiment
(LD 972 966 964
2,1 1506 1710 1890
@3.hH - 2220 2120
(1.2) 2596 2280 2270

The effect of the baseplate dynamics on the natural
frequencies of the disk/rotor system was explored for
both flexible and rigid baseplates. The natural
frequencies of the other modes except the axial mode
were almost similar for both cases, as shown in Table 4
at rotating speed being zero. But, as rotating speed
increases, The baseplate dynamics has the strongest
effect on both axial modes and rocking modes of the
system. In Figure 4, the axial mode is independent of

rocking mode on a rigid baseplate. These two modes
could not have any dynamic relations each other.
Otherwise, when the baseplate becomes flexible, axial
and rocking modes are fully coupled in some dynamic
condition. When the rotating speed is around zero, lines
® and @ are a backward rocking and an axial dominant
modes, respectively. However, as the rotating speed
increases, the natural frequencies of two modes become
closer and two modes are mixed. That is, these two
modes are fully coupled as shown in circle on Figure 4.
As the rotating speed keeps increasing beyond that value,
the coupled two modes are separated to axial and
backward rocking dominant modes. It is remarkable that
during the mode coupling, two lines exchange their
modes each other.

Table 4: Natural frequencies of a disk/spindle motor
mounted on a flexible baseplate and a rigid baseplate, at
Q=0.

Rigid baseplate (Hz) | Flexible baseplate (Hz)
Mode -
Analytical FEM Analytical | Experiment
Rocking 417 414 414,417
Axial +
Baseplate 443 447 402
(In Phase)
(0,2) of disk 543 541 543
(0,3) of disk 993 994 993
Axial +
Baseplate - - 583
(Out of Phase)

By the way, it’s interesting that mode coupling
phenomena between axial and rocking modes have a big
correlation with pivot point on baseplate (point @ in
Figure 1(b)). If the pivot point lies on symmetric line,
&=L,/2, {=L;/2, there is no mode coupling between two
modes. In this case, baseplate flexibility makes an only
influence on an axial mode. Because, this symmetric
pivot point on the baseplate can’t make a tilting motion
at all in the low frequency range. The tangent line at the
pivot point is always parallel to XY plane.

Finally, the effect of baseplate thickness variation on
the natural frequencies of the system were explored. The
natural frequencies relating the axial mode are very
sensitive to baseplate flexibility. Especially, the
disk/spindle system on the very flexible baseplate —
under 0.4mm has several coupled modes between
rocking and axial modes shown in Figure 5. In these
cases, the natural frequencies of the system are very
different from those of the disk/spindle mounted on a
stiff baseplate. So, the accurate prediction of the dynamic
performance of the disk/spindle system on such a
flexible baseplate is necessary for the design of the high
performance storage device. By the way, we find that the
natural frequencies of the system converge to those of
rigid baseplate, as the thickness of the baseplate
increases to high.
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Figure 4: Variations of natural frequencies considering
the effect of the baseplate dynamics by changing the
rotating speed. Solid line : a flexible baseplate, dotted
line : a rigid baseplate. The baseplate thickness is fixed
to be 0.4 mm.

4. Conclusions

The dynamic characteristics of the flexible
disk/spindle system mounted on a flexible baseplate were
analyzed. A simplified model was presented considering
the effects of the baseplate dynamics on a disk/spindle
system, and the equations of motion were derived by the
assumed mode method and Lagrange’s equation. The
effect of the baseplate flexibility on dynamics of the disk
was systematically explored. Also, it was found that the
baseplate flexibility had the strong effect on the flexible
disk modes with zero nodal diameter. Especially, as the
rotating speed increases, the flexible disk modes with
zero nodal diameter were coupled with those with one
nodal diameter, so the natural frequencies of the
disk/spindle system change differently compared with
the system on rigid baseplate. The more flexible is the
baseplate, the more complicated is the dynamic
performance of the disk/spindle system.

The simplified model presented in this paper was
applied to a small size storage device, and its validity
was verified from the experiments and FEM. The results
of simulations agreed well with the experiments. The
baseplate flexibility severely affected the axial mode of
the disk/rotor system. It was found that the baseplate
flexibility made the rocking modes and the axial mode
being coupled, while being completely decoupled for a
rigid baseplate. It was found that the dynamic

characteristics of the disk/spindle motor mounted on a
flexible baseplate were very complicated.

We hope that this paper will give a designer of
storage device a big help to determine the design
parameters and predict the dynamic behaviors of the
system, in order to increase data storage and reduce
access time and size.
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REFERENCES

(1) S. Okamoto, M. Sakata, K. Kimura and H. Ohnabe 1995 Journal
of Sound and Vibration 1845}, 887-906. Vibration Analysis of a
High Speed and Light Weight Rotor System Subjected to a Pitching
or Turning Motion, II: A Flexible Rotor System on Flexible
Suspensions.

(2) S.B. Chun and C. W. Lee 1996 Journal of Sound and Vibration
189]5], 587-608. Vibration Analysis of Shaft-Bladed Disk System by
using Substructure Synthesis and Assumed Modes Method.

(3) K. Ono, N. Saiki, Y. Sanada and A. Kumano 1991 ASME Journal
of Vibration and Acoustics 113[3], 292-298. Analysis of
Nonrepeatable Radial Vibration of Magnetic Disk Spindles.

(4) C.P.Roger Ku and 1. Y. Shen 1996 Tribology Transactions 39[3],
579-586. Effect of Disk Flexibility on Rocking Mode Frequencies of
a Disk Drive Spindle Motor System.

(5) Sung Jin Lee, Jintai Chung and Jang Moo Lee 1998 JSME
International Journal Series C 41{3}, 329-337. Free Vibrations of a
Flexible Spinning Disk with Axial Translation and Rigid-Body
Tilting.

(6) Meirovitch, Analytical Methods in Vibrations, Macmillan

-606-



