• Title/Summary/Keyword: Association Rules Algorithm

Search Result 141, Processing Time 0.027 seconds

An Efficient Algorithm For Mining Association Rules In Main Memory Systems (대용량 주기억장치 시스템에서 효율적인 연관 규칙 탐사 알고리즘)

  • Lee, Jae-Mun
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.579-586
    • /
    • 2002
  • This paper propose an efficient algorithm for mining association rules in the large main memory systems. To do this, the paper attempts firstly to extend the conventional algorithms such as DHP and Partition in order to be compatible to the large main memory systems and proposes secondly an algorithm to improve Partition algorithm by applying the techniques of the hash table and the bit map. The proposed algorithm is compared to the extended DHP within the experimental environments and the results show up to 65% performance improvement in comparison to the expanded DHP.

Implementation of Association Rules Creation System from GML Documents (GML 문서에서 연관규칙 생성 시스템 구현)

  • Kim, Eui-Chan;Hwang, Byung-Yeon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.27-35
    • /
    • 2006
  • As the increasing interest about geographical information, such researches and applied fields become wide. OGC(Open GIS Consortium) developed GML(Geography Markup Language) which is adopted XML(extensible Markup Language) in GIS field. In various applied field, GML is used and studied continuously. This paper try to find out the meaningful rules using Apriori algorithm from GML documents, one of the data mining techniques which is studied based on existing XML documents There are two ways to find out the rules. One is the way that find out the related rules as extracting the content in GML documents, the other find out the related rules based on used tags and attributes. This paper describes searching the rules through two ways and shows the system adopted two ways.

  • PDF

Big Data Analysis in School Adjustment Factors using Data Mining

  • Ko, Sujeong
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.

Design and Implementation of the Intrusion Detection Pattern Algorithm Based on Data Mining (데이터 마이닝 기반 침입탐지 패턴 알고리즘의 설계 및 구현)

  • Lee, Sang-Hoon;Soh, Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.717-726
    • /
    • 2003
  • In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.

Mining Association Rules in Multiple Databases using Links (복수 데이터베이스에서 링크를 이용한 연관 규칙 탐사)

  • Bae, Jin-Uk;Sin, Hyo-Seop;Lee, Seok-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.939-954
    • /
    • 1999
  • 데이타마이닝 분야에서는 대용량의 트랜잭션 데이타베이스와 같은 하나의 데이타베이스로부터 연관 규칙을 찾는 연구가 많이 수행되어왔다. 그러나, 창고형 할인매장이나 백화점 같이 고객 카드를 이용하는 판매점의 등장으로, 단지 트랜잭션에 대한 분석 뿐만이 아니라, 트랜잭션과 고객과의 관계에 대한 분석 또한 요구되고 있다. 즉, 두 개의 데이타베이스로부터 연관 규칙을 찾는 연구가 필요하다. 이 논문에서는 두 데이타베이스 사이에 링크를 생성하여 연관 항목집합을 찾는 알고리즘을 제안한다. 실험 결과, 링크를 이용한 알고리즘은 고객 데이타베이스가 메모리에 거주가능한 크기라면 시간에 따른 분석에 유용함을 보여주었다.Abstract There have been a lot of researches of mining association rules from one database such as transaction database until now. But as the large discount store using customer card emerges, the analysis is not only required about transactions, but also about the relation between transactions and customer data. That is, it is required to search association rules from two databases. This paper proposes an efficient algorithm constructing links from one database to the other. Our experiments show the algorithm using link is useful for temporal analysis of memory-resident customer database.

Discovery of Association Rules Base on Data of Time Series and Quantitative Attribute (시간적 관계와 수량적 가중치 따른 연관규칙 발견)

  • 양신모;정광호;김진수;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.207-210
    • /
    • 2003
  • In this paper, we explore a new data mining capability that is based on Quantitative Attribute and Time Series. Our solution procedure consists of two steps. First, We derive an algorithm to contain the Quantitative Attribute into a set of candidate item. Second, We redefine the concepts of confidence and support for composite association rules. It is shown that proposed methode is very advantageous and can lead to prominent performance improvement.

  • PDF

A Data Mining Technique for Customer Behavior Association Analysis in Cyber Shopping Malls (가상상점에서 고객 행위 연관성 분석을 위한 데이터 마이닝 기법)

  • 김종우;이병헌;이경미;한재룡;강태근;유관종
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.1
    • /
    • pp.21-36
    • /
    • 1999
  • Using user monitoring techniques on web, marketing decision makers in cyber shopping malls can gather customer behavior data as well as sales transaction data and customer profiles. In this paper, we present a marketing rule extraction technique for customer behavior analysis in cyber shopping malls, The technique is an application of market basket analysis which is a representative data mining technique for extracting association rules. The market basket analysis technique is applied on a customer behavior log table, which provide association rules about web pages in a cyber shopping mall. The extracted association rules can be used for mall layout design, product packaging, web page link design, and product recommendation. A prototype cyber shopping mall with customer monitoring features and a customer behavior analysis algorithm is implemented using Java Web Server, Servlet, JDBC(Java Database Connectivity), and relational database on windows NT.

  • PDF

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

Association Rules of Comorbidities in Dementia by Using Korea National Hospital Discharge In-depth Injury Survey Data

  • Kim, Mijung
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.127-133
    • /
    • 2022
  • This study aims to find out the associative relationship between dementia and comorbidities. To conduct this study, we used KNHDIS(Korea National Hospital Discharge In-depth Injury Survey) data from 2009 to 2018 provided by the KDCA(Korean Disease Control and Prevention Agency) annually. We used MySQL for data preprocessing and R for data analysis. As a result of applying the Apriori algorithm criteria of support(≥0.01), confidence(≥ 0.6), and lift(>1), seventeen rules related to dementia were discovered. The diseases associated with dementia were diabetes mellitus, hypertension, disorders of lipoprotein metabolism, glomerular disorders in diabetes mellitus, renal diseases, cardiovascular disease, cerebrovascular disease, and other urinary system disorders. This study can be utilized as primary data for the care of patients with dementia and provides implications for improving effective dementia prevention policies.

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules

  • Yoon Kyoung Choi;Sung Kwon Kim
    • Journal of Internet Technology
    • /
    • v.19 no.6
    • /
    • pp.1691-1698
    • /
    • 2018
  • In this paper, we are to address the problem of item recommendations to users in shopping malls selling several different kinds of items, e.g., daily necessities such as cosmetics, detergent, and food ingredients. Most of current recommendation algorithms are developed for sites selling only one kind of items, e.g., music or movies. To devise efficient recommendation algorithms suitable for repetitively purchasing items, we give a method to implicitly assign ratings for these items by making use of repetitive purchase counts, and then use these ratings for the purpose of recommendation prediction with the help of user-based collaborative filtering and item-based collaborative filtering algorithms. We also propose associate item-based recommendation algorithm. Items are called associate items if they are frequently bought by users at the same time. If a user is to buy some item, it is reasonable to recommend some of its associate items. We implement user-based (item-based) collaborative filtering algorithm and associate item-based algorithm, and compare these three algorithms in view of the recommendation hit ratio, prediction performance, and recommendation coverage, along with computation time.