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An Online Response System for Anomaly Traffic by
Incremental Mining with Genetic Optimization

Ming-Yang Su and Sheng-Cheng Yeh

Abstract: A flooding attack, such as DoS or Worm, can be eas-
ily created or even downloaded from the Internet, thus, it is one
of the main threats to servers on the Internet. This paper presents
an online real-time network response system, which can determine
whether a LAN is suffering from a flooding attack within a very
short time unit. The detection engine of the system is based on the
incremental mining of fuzzy asseciation rules from network pack-
ets, in which membership functions of fuzzy variables are opti-
mized by a genetic algorithm. The incremental mining approach
makes the system suitable for detecting, and thus, responding to an
attack in real-time. This system is evaluated by 47 flooding attacks,
only one of which is missed, with no false positives occurring. The
proposed online system belongs to anomaly detection, not misuse
detection. Moreover, a mechanism for dynamic firewall updating is
embedded in the proposed system for the function of eliminating
suspicious connections when necessary.

Index Terms: Anomaly detection, genetic algorithm, firewall, flood-
ing attack, fuzzy association rules, membership functions, online
incremental mining.

I. INTRODUCTION

An intrusion detection system (IDS) can be categorized ac-
cording to the monitoring strategy it follows and its detection
strategy. As for the former, there is a distinction between a host-
based intrusion detection system (HIDS) [1] and a network-
based intrusion detection system (NIDS) {2], [3]. In general, a
HIDS detects transformations in the local integrity of a com-
puter, e.g., the file system, while a NIDS detects intrusions orig-
inating from network adapters in the form of protocol packets. A
HIDS protects a single host, but a NIDS potentially protects a
network, While a monitoring strategy defines the “where,” a de-
tection strategy defines the “how.” Therefore, there exists mis-
use detection [4], [5] and anomaly detection [3], [6]. Misuse
detection, such as SNORT [5], aims to detect known attacks
by characterizing the rules that govern these attacks. Thus, a
rules update is most important and is frequently released by IDS
vendors. However, the rapid emergence of new vulnerabilities
and exploits makes misuse detection difficult to trust day af-
ter day. Anomaly detection is designed to capture any deviation
from the profiles of normal behavior patterns. It is much more
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suitable than misuse detection for detecting unknown or novel
attacks, but it has the potential to generate too many false pos-
itives. In this paper, the proposed online system is an anomaly
NIDS which can detect and respond to flooding attacks in real-
time. It is based on a genetically optimized incremental mining
algorithm for fuzzy association rules.

Many approaches have been proposed in previous literature
concerning the design of anomaly NIDSs, such as neuro-fuzzy
[2], support vector machine {6], decision tree [7], Bayesian neu-
ral networks [8], Naive Nayes [9], genetic-fuzzy [3], [10], and
fuzzy association rules [11]-[16]. However, to the best of our
knowledge, all anomaly NIDSs emphasize effectiveness, but ne-
glect efficiency. Usually, effectiveness is measured by detection
rate, false alarm rate, etc., and efficiency is measured by re-
sponse time when an attack has occurred. Much research into
anomaly NIDS, such as [2], {3], [6], [7], [10], has evaluated the
proposed approach by KDD CUP99 TCPDUMP datasets [17],
which meant that the research was designed for offline use and,
thus, could not meet the real-time characteristic of a NIDS. This
was because the 41 features presented in KDD CUP99 are com-
plicated and varied [2], [18]: The first 9 are intrinsic features
which describe the basic features of individual TCP connections
and can be obtained from raw TCPDUMP files; features 10 to
22 are content-based features obtained by examining the data
portion of a connection and suggested by domain knowledge;
features 23 to 31 are traffic-based features computed using a
two-second time window (“time-based™); while features 32 to
41 are also traffic-based features, but computed using a window
of 100 connections (*‘host-based”).

This research focuses on how to create an anomaly NIDS,
based on genetic optimized mining of fuzzy association rules,
which can detect and react to a flooding attack in real-time. In
contrast to traditional static mining for NIDS designs [11]-[16],
which can only be applied to offline NIDS, this system was de-
signed based on an incremental mining approach, which enables
the system to make a decision per time unit. In addition, a ge-
netic algorithm was applied to help select the best membership
functions for the fuzzy variables of mining. Consequently the
performance of the proposed response system can be improved.

The remainder of this paper is organized as follows:
Section II presents background knowledge, including fuzzy as-
sociation rules and membership functions; Section III intro-
duces the genetically optimized incremental mining algorithm
for fuzzy association rules; Section IV describes the online re-
sponse system proposed by this research; Section V provides
experimental results; and Section VI presents our conclusions.
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II. BACKGROUND

Fuzzy association rules have been receiving a great deal of
attention recently, and have had many applications in different
fields [11], [19]-[22]. In fuzzy association rules mining, mem-
bership function designs are important, and usually have pro-
found affects on the mined rules. This section will briefly intro-
duce the mining of fuzzy association rules, and the characteris-
tics of membership functions.

Agrawal and Srikant proposed the well-known Apriori algo-
rithm [23] in 1994 in which, given two thresholds of mini.sup
and mini_conf, the algorithm will find all such rules as “X =
Y with support mini_sup and confidence mini_conf, where X
and Y are subsets of the set of items, and X N'Y = §. The rule
X =Y in the database D has support s if the percentage of
records in D that contain X UY is s, and has confidence c if
the ratio of the number of records in D that contain X UY to
the number of records in D that contain X is ¢. Since the apri-
ori algorithm was designed for mining in databases with binary
items, fuzzy association rules mining [24]-[26] has been one of
the variations which has dealt with quantitative items.

While applying fuzzy association rules to an IDS design,
the term item, is replaced by the term feature, and thus, the
term itemset is equivalent to the term feature-set, which is a
set of features. Let D = {ry,r2, -, 7} be the database and
I = {z1,z2, - -, om} represent all features appearing in D. The
record r; represents the ith m-tuple in D. Each quantitative
feature i, 1 < k < m, is associated with some fuzzy vari-
ables, say vy, vz, - - -, vs. Every fuzzy variable is represented by
a membership function. For easy representation in the follow-
ing, MFW,),, 1<i<mandl < j <{,is used to uniquely
denote the jth membership function of feature x;. In the min-
ing of fuzzy association rules [26], [19], a fuzzy itemset con-
sists of two parts: Items and fuzzy variables, say (X, U), where
X = (z1,22, -, 2k) C I is a collection of items (or fea-
tures) and U = (vq,vg, - -, vx) is the collection of correspond-
ing fuzzy variables to X in order. Suppose there are totally n
records in the database. Then the support of (X, U) is computed
as

n k
Z H ME’L'j"UJ‘ (7'1' {3'3])

G=1 j==1

Sup ((X,U)) = @)

n
where 7;[z;] denotes the value of feature z; of the ith
record. For example, suppose four features, #packet, #SYNS,
#ACKS, and #connection, are of concern in a NIDS, and
each feature has three fuzzy variables, say low, medium,
and high, then 4x3=12 membership functions are involved,
i.e., M Fypackeriow denotes the low function of feature #packet,
M Fyacknigh denotes the high function of feature #ACK,
etc. Suppose there are three records in the database, as
shown in Table 1. Then the support of the fuzzy itemset
((#packet, #SYN, #connection), (low, medium, low)) is com-
puted as (MF#Packet.low(3260) X J\’IF#SYN.medium(135) X
M Ficonnection.low (27)+ MF; #packet.low(2l70)XM F #SYN.mcdium(75)X
MF;#connection,low(65)+MF#packet.low(6123>XMF#SYN.medium(213)

X MF#connectionjow(89»/3'
A fuzzy association rule has the form of (X,U) = (Y, V),
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Table 1. Records in database as an example.

#packet | #SYN | #ACK | #connection
3260 135 75 27
2170 75 43 65
6123 213 27 89

where (X,U) and (Y,V) are two fuzzy itemsets and
XNY =P LletZ =X@YadW = U@V, where @
is the concatenation operation. The support of the fuzzy asso-
ciation rule “(X,U) = (Y, V)" is computed as Sup({Z, W)),
and the confidence of the rule is computed as Sup((Z, W) /
Sup((X, U}). For example, let us consider the following fuzzy
association rule.

((#SYN, #ACK), (high, low)) = ((#connection), (medium)).
/if #SYN is high and #ACK is low, then #connection is medium
Its support is computed as Sup({(#SYN, #ACK, #connection),
(high, low, medium))), and its confidence is computed as
Sup({(#SYN, #ACK, #connection), (high, low, medium))) /
Sup({(#SYN, #ACK), (high, low))).

1I1I. GENETIC OPTIMIZATION OF MEMBERSHIP
FUNCTIONS IN INCREMENTAL MINING FOR
FUZZY ASSOCIATION RULES

As discussed in Section II, two important keys need to be ad-
dressed for a successful NIDS, which are based on fuzzy as-
sociation rules. One is applying incremental mining, instead of
static mining, to meet real-time demands. The other is a delib-
erate design for membership functions. We have proposed an
incremental mining algorithm [27] to derive fuzzy association
rules from network packets. Based on the incremental mining
algorithm, the paper further extends the algorithm to design an
online response system with genetic optimization in member-
ship functions,

A. Incremental Mining for Fuzzy Associarion Rules

According to the proposed algorithm {27], packet informa-
tion was collected to form one record every short time unit, and
to mine out the newest rule set as the latest record was being
gathered. Each current support value of a fuzzy itemset was
kept in the memory for a time unit. As the next record was
being gathered, the algorithm used the current support value
to compute the next one, and then replaced it with the new
one, as shown in the example below. Suppose the quantita-
tive values of the four features, #packet, #SYN, #ACK, and
#connection, are measured for each time unit, and in sequence
they are t; = (97,310,66,311), to = (215,208,75,210),
ts = (62,710,41,88), -+, t; = (230,86,31,720),- - -. For the
fuzzy itemset (X, U) = ((#packet, #SYN, #connection), (low,
medium, low)), its support value s at t1, tg, ¢3, - -, ;,- - -, is com-
puted individually as

8ty = (M Fypackerow (97) X M FysyN medium(310)
X M Fyconnection.low (311))/1 — tmp;
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Membership functions :
Low:f(x)=1/(1+abs((x—a)/ b)) _
Medium: f(x)=1/(1+abs((x - d)/e))
High: f(x)=1/(1+exp(—~g(x—h)))

Fig. 1. Membership functions before and after genetic optimization.

8¢, = (tmpx 1+ (M Fipacketiow (215) X M FysyN.medium (208)
X M Fyeonnection.low(210))) /2 — tmp;

515 = (tmpX2+(M Fipackettow (62) X M FisyN medium (710)
X M Ficonnectionlow (88))) /3 — tmp;

s, = (tmpx (7 — 1)+ (M Fypacetiow(230)
X M FiysyN.mediom (86) X M Ficonnection.low (720))) /i — tmap

Since the contribution of previous records to the current
support of a fuzzy itemset is ephemerally saved in the vari-
able, i.e., tmp, the cost of mining time will not be prolonged as
the aggregate records increase. In algorithm [27], a node struc-
ture is declared, and every fuzzy item-set is represented by a
node. The node structure contains a field to retain the above
tmp value. Since incremental mining requires dynamic updating
the support value of each fuzzy itemset, every node is scanned
once as the latest record is gathered. The whole algorithm and
its performance, including time and memory consumption, can
be found in [27].

Theoretically, the total number of nodes (fuzzy itemsets) gen-
erated in the algorithm was

maxlen

> mECy 2)
=1

where n is the number of features, m is the number of degrees
of each features, maxlen is defined as the longest itemset length
which the mining algorithm concerned, and C was the combi-
natorial operation. In this paper, maxlen is set to 2, m to 3, and
n to 20. As maxlen is set to 2, i.e., only rules derived from large
itemsets with length 2 are considered. Thus, the number of rules
can be reduced to 200 ~ 350.

B. Genetic Optimization of Membership Functions

Membership functions design is important, and they usually
have profound affects on the mined rules. This research adopts a
genetic algorithm to select the best membership functions for the
features applied in the proposed NIDS system. The membership

chromosome

N f2 J

i

s[5 T o] 1]

low medium high

Fig. 2. Gene and chromosome structures of evolution.

functions applied in this paper are listed below, in which abs(-) is
the absolute function, A is the power operation, and a, b, ¢, d, e,
f» g, and h are the constants. The output value of a membership
function falls in the interval of [0, 1]. Each feature has its own
membership functions, i.e., with different constants from feature
to feature. The goal of a genetic algorithm is to derive the most
appropriate membership functions for every feature. As shown
in Fig. 1, for a feature, its membership functions before and after
genetic evolution, are depicted by solid lines and dashed lines,
respectively.

Suppose n features are considered in the NIDS design, then
one chromosome in the genetic algorithm contains the n fea-
tures” membership functions, as defined in Fig. 2. The first chro-
mosome in the experiment was constructed heuristically. An ini-
tial population, containing 30 chromosomes, was derived from
the first chromosome by repeated application of the mutation
process. In each generation, the fitness of each new chromo-
some was evaluated according to the performance of the pro-
posed NIDS, using the fuzzy membership functions represented
by the chromosome, i.e., the fitness function of the genetic al-
gorithm was to maximize the overall accuracy in a given labeled
dataset. A specified percentage of the chromosomes with high
fitness were retained for the next generation. Then, parent chro-
mosomes were repeatedly selected from the current generation,
and new chromosomes were generated from these parents by
crossover and mutation. One generation ended when the number
of chromosomes for the next generation had reached the origi-
nal population, i.e., 30 chromosomes. The evolution process was
repeated for 250 generations.

IV. PROPOSED ONLINE RESPONSE SYSTEM

The proposed system was designed for online detection and
response to flooding attacks. A short time unit was defined, thus,
the reaction of the system must be performed once every time
unit. Two seconds defined one unit in this research, i.e., one
record was generated regardless of the number of captured pack-
ets. In the training stage, attack-free network traffic informa-
tion was collected at the rate of one record every two seconds,
and the genetic optimized membership functions were derived
in advance from a labeled dataset. The online response system
consists of four modules. module_A collected run-time network
traffic information online, at the rate of one record every two
seconds, and consistently sent the records to module B. mod-
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ule.B applied the genetically optimized incremental mining al-
gorithm to generate the newest fuzzy rule set every two sec-
onds. At the same time, module_C also performed the algorithm
every 2 seconds on the attack-free data records, i.e., adding one
new attack-free record every 2 seconds to the set of mined data
records. The two newest rule sets from module_C and module B
were then sent to module D for comparison, again, once ev-
ery two seconds. If their similarity was below the threshold, an
anomaly of network traffic could be found. Once an attack had
been detected, three actions resulted: An alarm was inserted into
the database, module_A was required to gather more detailed in-
formation about the attack and, finally, the filtering rule in the
firewall could be changed dynamically. In the implementation,
a round-robin strategy was applied on the attack-free records in
module.C.

In this paper, the similarity between the two rule sets was de-
fined as follows. Let S; and S2 be two rule sets. The similarity
between them was computed as:

SCORFE1 SCORE?
|S1] |52

sim(Sl,SQ) = (3)

where |S1], |S2| represent the number of rules in the sets,
SCOREl = 3} g, score(r,Ss2), and SCORE2 =
D wres, score(r, S1). If there is a rule ' = r in S with sup-
port s” and confidence ¢/, then score(r, S) was defined as:
e—¢|  _ls—s|
max(c,c’)’ max(s,s') )’

score(r,S) =1— max<

else

“

score(r, S) = —max(c, s).

Two rules, r and 1/, are regarded as r = 7/, if they have the
same antecedents and consequents. Finally, let SCORFE1 or
SCORE?2 be 0 if it was a negative value. In our system, for
any fuzzy itemset, its support was computed by

Current support = support due to the latest record X &k
+support due to all historical records

x(1 - k) 5)
where k is a constant between 0 and 1. For a NIDS design, the
importance of the latest data record should be greater than that
of any single historical data record. Three cases of k, & = 0.2,
k = 0.5, and k = 0.8, were studied in the experiments.

V. SIMULATION RESULTS AND ANALYSES

Although four attack categories, i.e., DoS, Probe, U2R, and
R2L., have been identified in KDD CUP99 datasets [17], all of
the related works in the literature based on fuzzy association
rules [11]-[16] have applied only one or two flooding attacks
for evaluation: El-Semary et al. [11] used one attack named ip-
sweep to evaluate their system; Bridges and Vaughn [12] applied
another attack named mscan to demonstrate their method’s ef-
fectiveness; Florez et al. [13] applied mailbomb to show their
performance; Dickerson et al. [14] applied two kinds of attacks,
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Table 2. Feature list.

TCP: S.IP+SYN count

TCP: S.IP+URG_Flag
+URG._data count

TCP: S.IP+ACK Flag
+ACK count

ARP: S.IP+ARP count

IP: D.IP slots hit

IP: Header length!=20 count

IP: MF_Flag count

IP: (Total length>1400]||<40)
&& TTL == 64 count

IP: checksum_error count

TCP: ACK Flag+ACK count

TCP: checksum_error count

TCP: SYN count

UDP: Same_length_interval
count

UDP: Length distribution
count

ICMP: Type error count

ICMP: checksum_error count

ICMP:; S.IP+ICMP packets

ICMP: ICMP packets count

count
IGMP: checksum_error
count

IGMP: Length>1000 count

TCP port scans and ICMP (ping) scans in their experiments;
Hossain et al. [15] used portscan to show their effectiveness;
while Shanmugam and Idris [16], as [12], applied mscan.

The reason for applying only one or two flooding attacks to
the evaluations in [11]-[16] may have been due to the follow-
ing two considerations. First, in order to detect the other two
kinds of attacks, U2R and R2L, in KDD CUP99 datasets, a
NIDS has to check the packet payload because the malicious
actions are due to content-based features, suggested by domain
knowledge, in the data portion of a connection. As mentioned in
the Introduction, the 41 features presented in KDD CUP99 are
complicated and diverse. The above anomaly NIDSs [11]-[16]
that were based on fuzzy association rules checked only headers
without packet payloads. However, U2R and R2L do not cause
any malformation of packets or packet violation to network pro-
tocols. Secondly, the amount of packets generated by U2R and
R2L in KDD CUP99 may be negligible in huge background traf-
fic. Thus, there may have been no significant difference between
rules mined from attacked online network traffic and rules mined
from attack-free network traffic.

Attacking tools were downloaded from the VX Heavens web-
site (http://vx.netlux.org/) which is maintained by the well-
known antivirus lab, Kaspersky. A total of 47 attacking tools
of flooding were studied for this research. In the experiments
of this section, a commercial application named IP traffic [28]
was applied to produce background traffic which can generate
any amount of TCP/UDP/ICMP packets by hardware limit. Two
hosts running IP traffic played sender and receiver, respectively,
and the receiver in the LAN and the sender transmitting pack-
ets was deployed through the Internet. During the experiments
of this study, the amount of network traffic remained from 0 to
80 Mbps through random connection and random flow size. One
laptop launched flooding attacks against the victim located in the
LAN through the Internet. OQur system, deployed in the LAN,
was coded by Microsoft Visual C++ and run on a laptop with
Windows XP. A total of 1000 attack-free traffic records were de-
rived from IP traffic in advance and stored in the database, one
at a time for every two seconds. As these records in the database
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Fig. 3. Simiarity degradations while being win32 fakeping attacked.

were exhausted, they were cyclically reused.

All of the 20 features applied in this research are listed in Ta-
ble 2, which were all derived from IP, TCP, UDP, ICMP, ARP,
and IGMP headers. They were adopted to collect packet infor-
mation and generate one record every two seconds. Some of the
features were single condition, e.g., D.IP slots hit, and some
were compound, e.g., S.IP + ACK Flag + ACK number. The
former example, D.IP slots hit, denoted how many slots of IP
addresses were hit by network packets, according to their des-
tination IP addresses. This study mapped a 32-bit IP address to
one of 256 slots by its twice-folded IP address, i.e., mapping
IP: x1.x2.x3.x4 to slot (x1 @ x2) (x3 @ x4). The latter example
denotes the maximal number of packets of source IP addresses
belonging to the same slot; (ACK flag = 0 and ACK num-
ber empty). Every feature in Table 2 had three degrees: Low,
medium, and high.

Three cases of & in (5), k = 0.2, k = 0.5, and k = 0.8, were
considered separately in the experiments. Detail of the similar-
ity in degradation from the win32. fakeping attack is illustrated
in Fig. 3. A win32.fakeping attack was remotely launched at the
fifth time unit lasting for 10 time units of flooding; the attack
was stopped at the fifteenth time unit. This system deployed
in the LAN showed that the similarity began to degrade at the
sixth time unit, even more so during the next ten units, and then
started to upgrade at the sixteenth time unit. If the threshold of
similarity is set to 0.5, the system, for the case of & = 0.2,
would generate the first alarm at the seventh time unit (similar-
ity value = 0.483554) and the last alarm at the twentieth time
unit (similarity value = 0.478354). Ideally, the NIDS system in
the LAN should show an alarm at the sixth time unit because an
attack has occurred and to end the alarm at the sixteenth time
unit because the attack has disappeared. Since historical data
records are taken into consideration in the incremental design, it
may be difficult for the similarity to immediately go down below
the threshold as an attack occurs, and immediately go up above
the threshold as the attack disappears. The smallest similarity
value was 0.124654 for the case of £ = 0.2 in Fig. 3, occurred
at the fifteenth time unit. It also can be concluded from Fig. 3
that during the incremental mining the larger ratio of the latest
record, i.e., k value, causes the system to become more suscep-
tible. win32.fakeping ceaselessly pings the victim machine with
an abnormal size of payload.

More precisely, Fig. 4 illustrates the changes of number of
fuzzy association rules obtained from online network traffic and
database attack-free traffic, and the number of equal rules be-
tween them. As shown in Fig. 4, there were 342 rules mined
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Fig. 5. Smallest similarity values for different flooding attacks.

from traffic records stored in the database. Although the to-
tal number of packets generated by IP traffic was set between
0 Mbps and 80 Mbps through random connections, the number
of rules obtained was maintained at 342. Also with IP traffic as
the background traffic, the win32.fakeping was launched at the
fifth time unit. The number of rules mined from online traffic
was reduced to 282 at the sixth time unit, and all the 282 rules
(set 51) were equal to part of the 342 rule set (set S») mined
from attack-free database records, i.e., S7 is a subset of Sy at
this time; thus, 342 — 282 = 60 rules in S2 were not appeared
in S;. According to the similarity computation formula shown
in Section 1V, the similarity between S and Sy was 0.636107 at
the sixth time unit. While flooding continued, the system mined
334 rules from online traffic at the eleventh time unit (again, say
set S1), in which 210 rules were equal to part of the 342-rule
set mined from attack-free database records at the eleventh time
unit (set S»): Thus, 334 — 210 = 124 rules appeared in S,
but not in Sp; On the other hand, 342 — 210 = 132 rules ap-
peared in S, but not in S1. The similarity between Sy and S; at
the eleventh time unit was only 0.161958. It was concluded that
when attacked by flooding, fuzzy association rules mined from
online network traffic could really deflect such an attack if the
change of these rules could be deliberately utilized, as with the
design of similarity computation in this paper.
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All 47 flooding attacks were tested and their smallest sim-
ilarity values, as shown in Fig. 5, were all below 0.5, ex-
cept for win32.winskiller. 1f the threshold was set to 0.5, only
win32.winskiller caused a false negative. win32.winskiller at-
tacked the NetBIOS name service protocol located in the upper
UDP. The IP and UDP headers of win32.winskiller packets were
normal. In our system, all mal-formatted NetBIOS headers be-
longed to the data payload of UDP and, thus, could be ignored,
which was why the smallest similarity could go no further down.

If the LAN was simultaneously attacked by two or more
flooding attacks, the system could detect such mixed attacks
more rapidly and effectively, because (3) the amount of mali-
cious (or mal-formatted) packets was much more than those un-
der a single attack, and (4) the chance of an anomaly, caused
by the features listed in Table 2, was increased. For example,
the smallest similarity values of win32.kod.a and win32.kod.a
in the case of &k = 0.2 were 0.42649986 and 0.3746681, re-
spectively. While simultaneously mixing these two attacks, the
smallest similarity value was reduced to 0.23415686. Finally, to
consider the variety of network applications, to avoid false posi-
tives, the threshold was set to 0.5 in this research, as determined
by experiments.

VI. CONCLUSION

Many anomaly NIDSs, e.g., [2], [3], [6], [7], [10], in the lit-
erature have applied KDD CUP99 datasets [17] in their experi-
ments: All belong to offline detections because many of the 41
features proposed by KDD CUP99 are content- or connection-
based [2], [18]. This study focuses on online real-time response
to anomaly traffic caused by DoS or Worm flooding attacks. In
the design, this proposed system has adopted incremental min-
ing of fuzzy association rules, with genetic optimization on the
membership functions. A mechanism for dynamic firewall up-
dating is embedded in the proposed system, so that it can cut
off some suspicious connections in real-time. Experiments were
conducted which demonstrated the effectiveness and efficiency
of this intrusion response system in preventing flooding attacks.
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