• Title/Summary/Keyword: Associated flow rule

Search Result 66, Processing Time 0.023 seconds

Numerical Analysis of Ultra High Performance Fiber Reinforced Concrete I-beam

  • Han, Sang-Mook;Guo, Yi-Hong;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.817-820
    • /
    • 2008
  • 이 논문은 초고강도 섬유보강 I형 보의 거동을 Diana를 사용하여 3차원 유한요소해석을 수행하였다. 보통 또는 고강도 콘크리트의 구성방정식과 달리 초고강도 섬유보강 콘크리트의 재료적 특성 즉, 인장 변형률 강화를 고려한 탄-소성 파괴 역학적 모델을 제안하여 해석에 반영하였다. 인장영역에서는 인장 변형률 강화를 고려한 다차원 고정 균열 규준을 사용하였고, 압축영역에서는 associated flow rule을 고려한 Drucker-Prager Criterion을 채택하였다. UHPFRC(Ultra-High Performance Fiber Reinforced Concrete) I형 보의 하중변형관계, 최초 균열, 최초 대각 균열, 극한상태 등의 결과를 실험결과와 비교하여 해석법의 유용성을 입증하였다.

  • PDF

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

Prediction of Stress-strain Behavior for Anisotropic Consolidated Compacted Decomposed Granite Soil (비등방 압밀된 다짐화강풍화토의 응력-변형률 거동 예측)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.86-95
    • /
    • 2003
  • During this study, constant stress ratio tests with previous compression anisotropic stress history are performed on compacted decomposed granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from stress-strain curves. The shape and characteristics of compression anisotropic yield curves is examined. In addition, the measured value of yielding curve and stress-strain behavior is predicted by Yasufuku's anisotropic constitutive model based on non-associated flow rule. The main results are summarized as follows : 1) Shape of yielding curves shows almost ellipse but asymmetry with respect to stress path during previous consolidation stress. 2) Yasufuku's anisotropic constitutive model is suitable in evaluation of yielding curves on anisotropic consolidated decomposed granite soil. 3) The predicted stress-strain curve shows reasonable agreement to measured behaviours.

Accuracy of EPFM Approach Based on the p-Version of F.E.M. (p-Version 유한요소법에 기초한 EPFM 해석법의 정확성)

  • 홍종현;우광성;박진환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.429-436
    • /
    • 1999
  • The best available solution to predict the fatigue life of structural steels is the implementation of EPFM approach based on the principles and techniques of elasto plastic fracture mechanics. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ΔJ for ΔK that is calculated by the proposed p-version model. The proposed P-version finite element model is formulated by the incremental theory of Plasticity that consists of the constitutive equation fur elastic-perfectly plastic materials, Tresca/von-Mises yield criteria, and associated flow rule. The experimental fatigue test is conducted with five UP(Center Clucked Panels) specimens to validate the accuracy of the p-version finite element model. Also, the results obtained by LTM approach have been compared with those by EPFM approach.

  • PDF

Analysis of Stretching of Perforated Sheets for Shadow masks (섀도마스크용 천공판의 신장성형 해석)

  • 백승철;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.25-32
    • /
    • 1994
  • In order to analyse stretching of perforated sheets for shadow masks by the finite element method for use with the associated flow rule, yield functions which can explain the yield stresses and the apparent plastic contraction ratios of the sheets have been obtained. Coefficients in the yield functions could be determined from the measured apparent plastic contraction ratios under uniaxial tension. Using this yield function and estimated coefficients, the stretching of hole-type and slot-type sheets has been analysed and compared with the experimental results. The calculated results were in good agreement with the experimental results.

  • PDF

Elasto-viscoplastic Dynamic Analysis of Subterranean Storage Cavern for Petroleum Reserve (석유비축을 위한 지하저장공동의 탄.점소성 동적해석)

  • 진지섭;김수석
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1989
  • In recent times, the subterranean caverns for storing crude oils and oil products are increasingly needed. The elasto-VIScoplastic DYNamic finite element analysis program(VISDYN) has been developed in order to investigate dynamic responses of the storage cavity. And validity of the program is studied through a numerical example. Mohr-Coulomb yield criterion is adopted and associated flow rule is assumed. Geometrically nonlinear behaviour is taken into account using a total Lagrangian formulation. In dynamic deformation reponses, the difference between the steady state displacements and the unsteady state ones by the static analysis can be neglected.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

Ρ-Version Finite Element Analysis for Material Nonlinearity (재료적 비선형을 고려한 Ρ-Version 유한요소해석)

  • 정우성;홍종현;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.