• Title/Summary/Keyword: Assist gas

Search Result 80, Processing Time 0.022 seconds

Numerical Analysis to Predict Air Flow Phenomena in a Road Tunnel (도로 터널내의 공기유동 양상을 예측하기 위한 수치해석)

  • Choi, In-Su;Park, Byung-Duck;Youn, Il-Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • A 2-dimensional $k-{\varepsilon}$ numerical model was developed to explore the effects of vehicle movement, jet fan and wind speed for the ventilation of road tunnels. To consider the temperature distribution in the tunnel, the energy equation was solved with a source term of the energy exhausted from vehicles. Although the tunnel ventilation can be made by the piston effect of vehicle movement, an additional ventilation is necessary when a head wind is existing. Jet fans may assist the air flow in the tunnel. However, more efficient ventilation system should be necessary, because the exhaust gas from vehicles flow along the road surface and it cannot be diffused in the longitudinal tunnel.

  • PDF

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

A Study on Reductions of Cold Start Emissions with Syngas Assist in an SI Engine (합성가스를 첨가한 SI 엔진의 냉간시동 유해 배기가스 저감에 관한 연구)

  • Song, Chun-Sub;Ka, Jae-Geum;Hong, Woo-Kyung;Park, Jeoung-Kwon;Cho, Yong-Seok;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.114-120
    • /
    • 2011
  • Fuel reforming technology for the fuel cell vehicles has been frequently applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to a 2.0 liter SI engine with MPI to improve exhaust emissions under cold start and early state of idle condition. Syngas fraction is varied to 0%, 10%, 25%, with various ignition timings. Exhaust emission characteristics and the exhaust system temperature were measured to investigate the effects of syngas addition on cold start. Result showed that HC emission could be dramatically reduced due to the fact that syngas has $H_2$ and no HC as components. The amount of $NO_x$ emission was decreased with the increase of syngas fraction. Because the dilution effect of $N_2$ and the retard of ignition timing reduces the peak combustion temperature inside the cylinder. Exhaust gas temperature was lower than that of gasoline feeding condition. Retarded ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in an SI engine is an effective solution to meet the future strict emission regulations.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Design and Evaluation of a Lung Assist Device for Patients with Acute Respiratory Syndrome using Hollow Fiber Membranes (중공사 막을 이용한 급성호흡곤란증후군 환자용 폐 보조 장치의 설계와 평가)

  • Lee, Sam-Cheol;Kwon, O-Sung;Kim, Ho-Cheol;Hwang, Young-Sil;Lee, Hyun-Cheol
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.224-232
    • /
    • 2005
  • The use of the lung assist device (LAD) would be well suited for acute respiratory failure (ARF) patients, combining the simplicity of mechanical ventilation with the ability of extracoporeal membrane oxygenators (ECMO) to provide temporary relief for the natural lungs. This study's specific attention was focused on the effect of membrane vibration in the LAD. Quantitative experimental measurements were performed to evaluate the performance of the device, and to identify membrane vibration dependence on blood hemolysis. We tried to decide upon excited frequency band of limit hemolysis when blood hemolysis came to through a membrane vibration action. The excited frequency of the module type 5, consisted of 675 hollow fiber membranes, showed the maximum gas transfer rate. We concluded that the maximum oxygen transfer rate seemed to be caused by the occurrence of maximum amplitude and the transfer of vibration to hollow fiber membranes. It was excited up to $25{\pm}5$ Hz at each blood flow rate of module type 5. We found that this frequency became the 2nd mode resonance riequency of the flexible in blood flow. Blood hemolysis was low at the excited frequency of $25{\pm}5$ Hz. Therefore, we decided that limit hemolysis frequency of this LAD was $25{\pm}5$ Hz.

Study of high Speed Laser Cutting of LED Module (LED 모듈의 초고속 레이저 절단을 위한 연구)

  • Choi, Won Yong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • In this study, we conducted the preliminary research for high speed laser cutting of LED module. In particular, the feasibility of ultra-high speed laser cutting of 100 mm/s which exceeds the cutting speed of conventional dicing saw was examined. For this, copper/ceramic and silicone/ceramic hybrid substrates, which are the components of the LED module, were fabricated, and the surface morphology, surface roughness and flexural strength of the laser-cut samples were investigate and compared with the dicing-cut samples. To investigate optimal laser cutting conditions for hybrid substrates, the effects of various laser cutting conditions on cutting surface characteristics were studied using single ceramic and copper substrate. Optimal laser cutting conditions of the hybrid substrates were the use of Ar assist gas, high laser power and high assist gas pressure. Comparing the cutting surface of the hybrid substrates, the surface characteristics of the laser-cut samples are slightly inferior to those of the dicing-cut samples. The average surface roughness of the laser-cut samples was about $9{\mu}m$, and that of the dicing-cut samples was about $4{\mu}m$. However, considering very low cutting speed (3 mm/s) of the dicing saw, the surface morphology of the laser-cut sample was relatively uniform, and the surface roughness was not much different from that of the dicing-cut sample. The flexural strength of the laser-cut samples was equivalent to or slightly inferior to the flexural strength of dicing-cut samples. However, if the laser processing conditions are sufficiently optimized, the ultra-high speed laser cutting of the LED module will be possible.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Analysis on behavior of keyhole and plasma using photodiode in laser welding of aluminum 6000 alloy (포토 다이오드를 이용한 6000계열 알루미늄 합금의 레이저 용접에서 키홀 및 플라즈마의 거동 해석)

  • Park Y. W.;Park H. S.;Rhee S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.11-24
    • /
    • 2004
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand behavior of plasma and keyhole in order to improve weld quality and monitor the weld state. In this study, spectral analysis was carried out to verify the spectrum for plasma which is generated in laser welding of A 6000 aluminum alloy. Two photodiodes which cover the range of plasma wavelength was used to measure light emission during laser welding according to assist gas flow rate and welding speed. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed. To determine the level of significance, analysis of variation (ANOVA) was carried out.

  • PDF

Wear Properties of Seal Graphite at Elevated Temperature (기밀소재 Graphite의 고온마모 특성에 관한 연구)

  • Yang, Ho-Young;Kim, Jaehoon;Ha, Jaeseok;Kim, YeonWook;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • The graphites as airtight structure seals prevent high-pressure and high-temperature gas from flowing into actuator of propulsion system and generate lubricant film during wear procedure to assist lubricant and sealing. In this study, the tribological characteristics of the graphite in high-temperature are evaluated. In order to evaluate the tribological characteristics of high density graphite(HK-6), variables which are temperature, sliding speed and contact load are set. this study suggest optimized environment conditions through the wear properties of graphite. Consequeantly, high temperature is better than at room temperature to generate lubricant film, so that friction coefficient of graphite is lower at high temperature than at room temperature.