• Title/Summary/Keyword: Asset Pricing Models

Search Result 36, Processing Time 0.02 seconds

Cash Flow Anomalies Associated with Business Conditions in Korean Stock Market

  • Yoon, Bo-Hyun;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.12 no.5
    • /
    • pp.61-69
    • /
    • 2014
  • Purpose - Many studies report that returns on hedge portfolios that eliminate particular risk types are abnormal from traditional asset pricing models' perspectives. This study examines the pervasiveness of anomalous returns conditioned on business cycle and group size. Research design, data, and methodology - Using KOSPI and KOSDAQ market data from July 1991 to December 2013, we categorize stocks into appropriately sized groups, and dichotomize our sample periods into expansion and recession periods then, we construct hedge portfolios by sorting stocks by anomaly variables and calculate their returns. Results - Four anomalies, including earnings yield, net stock issue, total asset growth, and liquidity appear pervasive across all groups for the entire sample period. However, only the hedge returns of net stock issues are significant across all group sizes during both expansion and recession. Conclusions - A net stock issue can be an appropriate proxy for expected growth of book equity for all group sizes in recessions. This finding could provide insights to investment industry participants and to researchers interested in the relationship between expected growth of book equity and business cycle risk.

A Selective Induction Framework for Improving Prediction in Financial Markets

  • Kim, Sung Kun
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.1-18
    • /
    • 2015
  • Financial markets are characterized by large numbers of complex and interacting factors which are ill-understood and frequently difficult to measure. Mathematical models developed in finance are precise formulations of theories of how these factors interact to produce the market value of financial asset. While these models are quite good at predicting these market values, because these forces and their interactions are not precisely understood, the model value nevertheless deviates to some extent from the observable market value. In this paper we propose a framework for augmenting the predictive capabilities of mathematical model with a learning component which is primed with an initial set of historical data and then adjusts its behavior after the event of prediction.

Industry Stock Returns Prediction Using Neural Networks (신경망을 이용한 산업주가수익율의 예측)

  • Kwon, Young-Sam;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.9 no.3
    • /
    • pp.93-110
    • /
    • 1999
  • The previous studies regarding the stock returns have advocated that industry effects exist over entire industry. As the industry categories are more rigid, the demand for predicting the industry sectors is rapidly increasing. The advances in Artificial Intelligence and Neural Networks suggest the feasibility of a valuable computational model for stock returns prediction. We propose a sector-factor model for predicting the return on industry stock index using neural networks. As a substitute for the traditional models, neural network model may be more accurate and effective alternative when the dynamics between the underlying industry features are not well known or when the industry specific asset pricing equation cannot be solved analytically. To assess the potential value of neural network model, we simulate the resulting network and show that the proposed model can be used successfully for banks and general construction industry. For comparison, we estimate models using traditional statistical method of multiple regression. To illustrate the practical relevance of neural network model, we apply it to the predictions of two industry stock indexes from 1980 to 1995.

  • PDF

Option Pricing Models with Drift and Jumps under L$\acute{e}$vy processes : Beyond the Gerber-Shiu Model (L$\acute{e}$vy과정 하에서 추세와 도약이 있는 경우 옵션가격결정모형 : Gerber-Shiu 모형을 중심으로)

  • Cho, Seung-Mo;Lee, Phil-Sang
    • The Korean Journal of Financial Management
    • /
    • v.24 no.4
    • /
    • pp.1-43
    • /
    • 2007
  • The traditional Black-Scholes model for option pricing is based on the assumption that the log-return of the underlying asset follows a Brownian motion. But this assumption has been criticized for being unrealistic. Thus, for the last 20 years, many attempts have been made to adopt different stochastic processes to derive new option pricing models. The option pricing models based on L$\acute{e}$vy processes are being actively studied originating from the Gerber-Shiu model driven by H. U. Gerber and E. S. W. Shiu in 1994. In 2004, G. H. L. Cheang derived an option pricing model under multiple L$\acute{e}$vy processes, enabling us to adopt drift and jumps to the Gerber-Shiu model, while Gerber and Shiu derived their model under one L$\acute{e}$vy process. We derive the Gerber-Shiu model which includes drift and jumps under L$\acute{e}$vy processes. By adopting a Gamma distribution, we expand the Heston model which was driven in 1993 to include jumps. Then, using KOSPI200 index option data, we analyze the price-fitting performance of our model compared to that of the Black-Scholes model. It shows that our model shows a better price-fitting performance.

  • PDF

Block Trading Based Volatility Forecasting: An Application of VACD-FIGARCH Model

  • TU, Teng-Tsai;LIAO, Chih-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to construct the ACD model for the block trading volume duration. The ACD model based on the block trading volume duration is referred to as Volume ACD (VACD) in this study. By integrating with GARCH-type models, the VACD based GARCH type models, which include VACD-GARCH, VACD-IGARCH and VACD-FIGARCH models, are set up. This study selects Chunghwa Telecom (CHT) Inc., offering the America Depository Receipt (ADR) in NYSE, to investigate the block trading volume duration in Taiwanese equity market. The empirical results indicate that the long memory in volume duration series increases dependence at level of volatility clustering by VACD (2,1)-FIGARCH (3,d,1) model. Moreover, the VACD (2,1)-IGARCH (1,1) exhibits relatively better performance of prediction on capturing block trading volume duration. This volatility model is more appropriate in this study to portray the change of the CHT Inc. prices and provides more information about the volatility process for investment strategy, which can be a reference indicator of financial asset pricing, hedging strategy and risk management.

Can Idiosyncratic Volatility Factor be a Risk Factor? (고유변동성 요인에 대한 위험평가)

  • Kim, Sookyung;Byun, Youngtae;Kim, Woohyun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.490-497
    • /
    • 2018
  • In this study, we examined whether common idiosyncratic volatility(CIV), a risk factor for idiosyncratic volatility, can be evaluated as a pricing factor. The sample is listed on the Korea Exchange. The analysis period is 288 months from July 1992 to June 2016. The main results of this study are as follows. First, in the empirical verification of the market excess returns of the testing portfolios, the difference in the return on the CIV factor sensitivity difference was statistically significant. In other words, we confirmed that there is a risk premium for CIV factors. Second, CAPM, FF3 factor model, and FF5 factor model do not explain the risk premium for CIV factors, whereas factor models that add CIV factors explain the risk premium for CIV factors. In other words, the CIV factor can be evaluated in terms of pricing factors.

A Knowledge Integration Model for Corporate Dividend Prediction

  • Kim, Jin-Hwa;Won, Chae-Hwan;Bae, Jae-Kwon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.129-134
    • /
    • 2008
  • Dividend is one of essential factors determining the value of a firm. According to the valuation theory in finance, discounted cash flow (DCF) is the most popular and widely used method for the valuation of any asset. Since dividends play a key role in the pricing of a firm value by DCF, it is natural that the accurate prediction of future dividends should be most important work in the valuation. Although the dividend forecasting is of importance in the real world for the purpose of investment and financing decision, it is not easy for us to find good theoretical models which can predict future dividends accurately except Marsh and Merton (1987) model. Thus, if we can develop a better method than Marsh and Merton in the prediction of future dividends, it can contribute significantly to the enhancement of a firm value. Therefore, the most important goal of this study is to develop a better method than Marsh and Merton model by applying artificial intelligence techniques.

  • PDF

Grouping stocks using dynamic linear models

  • Sihyeon, Kim;Byeongchan, Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.695-708
    • /
    • 2022
  • Recently, several studies have been conducted using state space model. In this study, a dynamic linear model with state space model form is applied to stock data. The monthly returns for 135 Korean stocks are fitted to a dynamic linear model, to obtain an estimate of the time-varying 𝛽-coefficient time-series. The model formula used for the return is a capital asset pricing model formula explained in economics. In particular, the transition equation of the state space model form is appropriately modified to satisfy the assumptions of the error term. k-shape clustering is performed to classify the 135 estimated 𝛽 time-series into several groups. As a result of the clustering, four clusters are obtained, each consisting of approximately 30 stocks. It is found that the distribution is different for each group, so that it is well grouped to have its own characteristics. In addition, a common pattern is observed for each group, which could be interpreted appropriately.

The Foreign Exchange Exposure and Asymmetries on Individual Firms (개별기업의 환노출과 비대칭성에 관한 연구)

  • Lee, Hyon-Sok
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.305-329
    • /
    • 2003
  • This work analyzes the influence of the dollar and yen currency on the rate of return of the individual firms and its symmetries based on the data from Jan. 5 1987 to Dec. 28, 2001. GARCH and autoregressive error models were used for on the daily data, due to the heteroscedascity and autoregression of the error terms, and as for the monthly data, this paper follows the autoregressive error models. Daily data fumed out to be a better explanatory variable in detecting exchange rate exposure, and EGARCH(1, 1) and GJR-GRARCH(1, 1) have higher competence in analyzing the daily data. Also, most of the exposed firms have been exposed in the negative region, and appreciation of exchange rate does not help enhancing the asset value of the domestic value. Analysis on the asymmetries let us conclude that high proportion of domestic firms face asymmetric exchange rate exposure, and that the pricing-to-market theory carries more conviction than the real option theory. Furthermore, monthly data are more precise in analysis of asymmetries.

  • PDF

A study on Industries's Leading at the Stock Market in Korea : Gradual Diffusion of Information and Cross-Asset Return Predictability (산업의 주식시장 선행성에 관한 실증분석 : 정보의 점진적 확산과 자산간 수익률 예측 가능성)

  • Lee, Hae-Young;Kim, Jong-Kwon
    • The Korean Journal of Financial Management
    • /
    • v.25 no.1
    • /
    • pp.23-49
    • /
    • 2008
  • We test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. And, the aim of this paper is related to forecast the stock market, business cycle index and industrial production by various indicators of economic activities in Korea. For this, our paper sets models and focuses on empirical test. The stock market on this month correlate with industries in Korea. The stock market doesn't lead to industries. The industries and macroeconomic variables have high correlation. We test that gradual diffusion of industrial information will predict stock market in Korea. For this, we analysis on possibility of Granger cause by VAR models between industries and stock market. As a result, 21 portfolios cause to Kospi statistically significance at 5%. Especially, the Beverage portfolio has bilateral Granger causality to Kospi. In case of Internet and Cosmetics portfolio, Kospi has unilateral Granger causality to it. The predictability of specific industries has a relation to Macroeconomic variables. What industrial portfolios predict to Business Coincidence Index? The only 6 industrial portfolios of 36 portfolios have a statistically significance at 10%. And, 9 portfolios have a statistically significance at 5%.

  • PDF