• Title/Summary/Keyword: Assembly structure

Search Result 817, Processing Time 0.037 seconds

Craftsmanship of Non-Educated Constructors in Korean-Style Secondary Station(Gong-So) of Naepo Region (충남 내포지방의 한옥 공소에 나타난 민간 기술자의 현장기법)

  • Park, Kwang-Hyun;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.3
    • /
    • pp.19-26
    • /
    • 2010
  • This study is aimed to look into the craftsmanship non-educated constructors in Korean-style secondary stations(Gong-So) of Naepo region which is located in the northwestern Chungcheongnam-do. Although the area was persecuted as one of three cradles of Korean Catholicism, Catholic activities flourished there. The 13 cases of Korean-style secondary stations were selected through a survey report list about modern cultural assets of Chungcheongnam-do published in december 2004. This study examined the methods of plan layout and framework of Gong-So to look into craftsmanship of non-educated constructors, the results are as follows; The methods of plan layout are divided into three types according to existence and arrangement of inner column(Nae-Ju); 'Layout with Nae-Ju' is considered as the primary form of Korean-style Gong-So with using regular Nae-Ju. 'Layout with the different position of the center between Nae-Ju and exterior column(Oe-Ju)' and 'layout without Nae-Ju' is appeared in Korean-style Gong-So which is important to assembly and alter function. The methods of framework are appeared variously according to different plan layout for securing worship space. The unusal beam(Chung-Ryang) is used to solve different spans of altar and narthex. When space was formed widely without Nae-Ju, diagonal members and M letter type rafters are used, they are influenced by the technique of western wooden roof truss.

Sonochemical Synthesis of Closed [5,6]-bridged Aziridino[70]fullerene Derivative and Self-assembled Multilayer Films

  • Yoon, Shin-Sook;Hwang, Sung-Ho;Hong, Sung-Kyu;Lee, Jeong-Ho;Ko, Weon-Bae
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.325-328
    • /
    • 2009
  • This cycloaddition of [70]fullerene with methyl azidoacetate in benzene under ultrasonic irradiated condition afforded the closed [5,6]-bridged aziridino[70]fullerene derivative, which was unusual product of cycloaddition to the 5,6-junction of fullerene. Its structure was determined by FAB-MS, UV-vis, $^1H-$ and $^{13}C$-NMR spectral data. The closed [5,6]-bridged aziridino[70]fullerene-functionalized gold nanoparticle films were self-assembled using the layer-by-layer method on the reactive of glass slides functionalized with 3-mercaptopropyl trimethoxysilane. The functionalized glass slides were alternately soaked in the solution containing closed the [5,6]-bridged aziridino[70]fullerene and 4-aminothiophenoxide/hexanethiolate-protected gold nanoparticles. The closed [5,6]-bridged aziridino[70]fullerene-functionalized gold nanoparticle films have grown up to 5 layers depending on the immersion time. The self-assembled nanoparticle multilayer films were characterized using UV-vis spectroscopy showed that the surface plasmon band of gold at 527 nm gradually became more evident as successive layers were added to the films.

Improvement of optical properties in patterned vertical alignment mode with modified electrodes structure (전극구조 개선을 통한 PVA 셀의 광학특성 향상방안)

  • Gim, Hye-Young;Kim, Woo-Il;Kim, Dae-Hyun;Kwon, Dong-Won;Im, Se-Hyeon;Lee, Seung-Hee;Jeong, Yeon-Hak;Ryu, Jae-Jin;Kim, Kyeong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.172-172
    • /
    • 2010
  • The Patterned vertical alignment (PVA) mode has many advantages such as perfect dark state at the normal direction and wide viewing angle. However, PVA mode needs additional process to pattern electrodes of both substrates and complicated assembly process. Moreover, this mode shows slow response time. To overcome these problems, we use plane shape ITO on top substrate instead of patterned electrode and form proper tilt angle of LC director on the surface while maintaining these original merits. Consequently, we achieve fast response time and improve transmittance.

  • PDF

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Simulation Based Production Using 3-D CAD in Shipbuilding

  • Okumoto, Yasuhisa;Hiyoku, Kentaro;Uesugi, Noritaka
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • The application of three-dimensional (3-D) CAD has been popularized for design and production and digital manufacturing has been spreading in many industrial fields. By simulation of the production process using 3-D digital models, which are the core of CIM (Computer Integrated Manufacturing) system, the efficiency and safety of production are improved at each stage of work, and optimization of manufacturing can be achieved. This paper firstly describes the concept of "simulation based production" in shipbuilding and also digital manufacturing; the 3-D CAD system is indispensable for effective simulation because ship structure is three dimensionally complex. By simulation, "computer optimized manufacturing" can be possible. The most effective fields of simulation in shipbuilding are in jobs where many parties have to cooperate, while existing two-dimensional drawings are hardly observed the whole structures due to interference between structures or equipment of complex shape. In this paper some examples of the successful application in IHIMU (IHI Marine United Inc.) are shown: assembly of a pipe unit, erection of a complex hull block, carriage of equipment, installation of a propeller, and access in an engine room.

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

A study on color characteristics of Multi-color functional Rapid Prototypes Using laser stereolithography (광조형을 이용한 다색 기능성 시작품의 색상특성에 관한 연구)

  • 조진구;정해도;손재혁;임용관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.824-828
    • /
    • 2000
  • As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.

  • PDF

Nanoscale Floating-Gate Characteristics of Colloidal Au Nanoparticles Electrostatically Assembled on Si Nanowire Split-Gate Transistors

  • Jeon, Hyeong-Seok;Park, Bong-Hyun;Cho, Chi-Won;Lim, Chae-Hyun;Ju, Heong-Kyu;Kim, Hyun-Suk;Kim, Sang-Sig;Lee, Seung-Beck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Nanoscale floating-gate characteristic of colloidal Au nanoparticles electrostatically assembled on the oxidized surface of Si nanowires have been investigated. The Si nanowire split-gate transistor structure was fabricated by electron beam lithography and subsequent reactive ion etching. Colloidal Au nanoparticles with ${\sim}5$ nm diameters were selectively deposited onto the Si nanowire surface by 2 min electrophoresis. It was found that electric fields applied to the self-aligned split side gates allowed charge to be transferred on the Au nanoparticles. It was observed that the depletion mode cutoff voltage, induced by the self-aligned side gates, was shifted by more than 1 V after Au nanoparticle electrophoresis. This may be due to the semi-one dimensional nature of the narrow Si nanowire transport channel, having much enhanced sensitivity to charges on the surface.