Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.09.2016.0198

The Plant Cellular Systems for Plant Virus Movement  

Hong, Jin-Sung (Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University)
Ju, Ho-Jong (Department of Agricultural Biology, College of Agricultural Life Science, Chonbuk National University)
Publication Information
The Plant Pathology Journal / v.33, no.3, 2017 , pp. 213-228 More about this Journal
Abstract
Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.
Keywords
intercellular movement; movement protein; plant virus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Maiss, E., Korpela, T., Morozov, S. Yu. and Atabekov, J. G. 1996. Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett. 397:75-78.   DOI
2 Kalinina, N. O., Rakitina, D. V., Solovyev, A. G., Schiemann, J. and Morozov, S. Y. 2002. RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321-329.   DOI
3 Karpova, O. V., Rodionova, N. P., Ivanov, K. I., Kozlovsky, S. V., Dorokhov, Y. L. and Atabekov, J. G. 1999. Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261:20-24.   DOI
4 Zavaliev, R., Sagi, G., Gera, A. and Epel, B. L. 2010. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J. Exp. Bot. 61:131-142.   DOI
5 Zavaliev, R., Ueki, S., Epel, B. L. and Citovsky, V. 2011. Biology of callose (${\beta}$-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117-130.   DOI
6 Zwart, M. P., Daros, J. A. and Elena, S. F. 2012. Effects of Potyvirus effective population size in inoculated leaves on viral accumulation and the onset of symptoms. J. Virol. 86:9737-9747.   DOI
7 Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Novikov, V. K. and Arkhipenko, M. V. 2001. Translational activation of encapsidated Potato virus X RNA by coat protein phosphorylation. Virology 286:466-474.   DOI
8 Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V. and Poljakov, V. Y. 2000. The movement protein-triggered in situ conversion of Potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259-263.   DOI
9 Baluska, F., Cvrckova, F., Kendrick-Jone, J. and Volkmann, D. 2001. Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol. 126:39-46.   DOI
10 Baluska, F., Samaj, J., Napier, R. and Volkmann, D. 1999. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J. 19:481-488.   DOI
11 Bamunusinghe, D., Hemenway, C. L., Nelson, R. S., Sanderfoot, A. A., Ye, C. M., Silva, M. A., Payton, M. and Verchot-Lubicz, J. 2009. Analysis of Potato virus X replicase and TGBp3 subcellular locations. Virology 393:272-285.   DOI
12 Bayne, E. H., Rakitina, D. V., Morozov, S. Y. and Baulcombe, D. C. 2005. Cell-to-cell movement of Potato potexvirus X is dependent on suppression of RNA silencing. Plant J. 44:471-482.   DOI
13 Liu, J. Z., Blancaflor, E. B. and Nelson, R. S. 2005. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol. 138:1853-1865.   DOI
14 Lough, T. J., Lee, R. H., Emerson, S. J., Forster, R. L. and Lucas, W. J. 2006. Functional analysis of the 5' untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455-465.   DOI
15 Lough, T. J., Netzler, N. E., Emerson, S. J., Sutherland, P., Carr, F., Beck, D. L., Lucas, W. J. and Forster, R. L. 2000. Cell-tocell movement of Potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol. Plant-Microbe Interact. 13:962-974.   DOI
16 Bamunusinghe, D., Seo, J. K. and Rao, A. L. 2011. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein. J. Virol. 85:2953-2963.   DOI
17 Bayer, E., Thomas, C. L. and Maule, A. J. 2004. Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223:93-102.
18 Beauchemin, C., Boutet, N. and Laliberte, J. F. 2007. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J. Virol. 81:775-782.   DOI
19 Deom, C. M., Oliver, M. J. and Beachy, R. N. 1987. The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:389-394.   DOI
20 Demchenko, K. N., Voitsekhovskaja, O. V. and Pawlowski, K. 2014. Plasmodesmata without callose and calreticulin in higher plants: open channels for fast symplastic transport? Front. Plant Sci. 5:74.
21 Diaz, A. and Ahlquist, P. 2012. Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr. Opin. Microbiol. 15:519-524.   DOI
22 Diaz, A. and Wang, X. 2014. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr. Opin. Virol. 9:104-110.   DOI
23 Ding, B. 1998. Intercellular protein trafficking through plasmodesmata. Plant Mol. Biol. 38:279-310.   DOI
24 Ding, B., Turgeon, R. and Parthasarathy, M. V. 1992. Substructure of freeze substituted plasmodesmata. Protoplasma 169:28-41.   DOI
25 Dolja, V. V., McBride, H. J. and Carrington, J. C. 1992. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc. Natl. Acad. Sci. U. S. A. 89:10208-10212.   DOI
26 Lucas, W. J., Ding, B. and van der Schoot, C. 1993. Plasmodesmata and the supracellular nature of plants. New Phytol. 125:435-476.   DOI
27 Lough, T. J., Shash, K., Xoconostle-Cazares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. S. and Lucas, W. J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol. Plant-Microbe Interact. 11:801-814.   DOI
28 Lucas, W. J. 1995. Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr. Opin. Cell. Biol. 7:673-680.   DOI
29 Lucas, W. J. 2006. Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169-184.   DOI
30 Lucas, W. J. and Lee, J. Y. 2004. Plasmodesmata as a supracellular control network in plants. Nat. Rev. Mol. Cell. Biol. 5:712-726.   DOI
31 Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K. and Angell, S. 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol. Plant-Microbe Interact. 16:132-140.   DOI
32 Seemanpillai, M., Elamawi, R., Ritzenthaler, C. and Heinlein, M. 2006. Challenging the role of microtubules in Tobacco mosaic virus movement by drug treatments is disputable. J. Virol. 80:6712-6715.   DOI
33 Shaw, J. G. 1999. Tobacco mosaic virus and the study of early events in virus infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354:603-611.   DOI
34 Shen, W., Yan, P., Gao, L., Pan, X., Wu, J. and Zhou, P. 2010. Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol. Plant Pathol. 11:335-346.   DOI
35 dos Reis Figueira, A., Golem, S., Goregaoker, S. P. and Culver, J. N. 2002. A nuclear localization signal and a membrane association domain contribute to the cellular localization of the Tobacco mosaic virus 126-kDa replicase protein. Virology 301:81-89.   DOI
36 Ferralli, J., Ashby, J., Fasler, M., Boyko, V. and Heinlein, M. 2006. Disruption of microtubule organization and centrosome function by expression of Tobacco mosaic virus movement protein. J. Virol. 80:5807-5821.   DOI
37 Tilney, L. G., Cooke, T. J., Connelly, P. S. and, Tilney, M. S. 1991. The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J. Cell Biol. 112:739-747.   DOI
38 Stass, A. and Horst, W. J. 2009. Callose in abiotic stress. In: Chemistry, biochemistry and biology of (1-3)-beta-glucans and related polysaccharides, eds. by A. Bacic, G. B. Fincher and B. A. Stone, pp. 499-524. Academic Press, London, UK.
39 Tamai, A. and Meshi, T. 2001. Cell-to-cell movement of Potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol. Plant-Microbe Interact. 14:1158-1167.   DOI
40 Thomas, C. L., Bayer, E. M., Ritzenthaler, C., Fernandez-Calvino, L. and Maule, A. J. 2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol. 6:e7.   DOI
41 Tilsner, J., Linnik, O., Wright, K. M., Bell, K., Roberts, A. G., Lacomme, C., Santa Cruz, S. and Oparka, K. J. 2012. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol. 158:1359-1370.   DOI
42 Tilsner, J. and Oparka, K. J. 2012. Missing links?--the connection between replication and movement of plant RNA viruses. Curr. Opin. Virol. 2:705-711.   DOI
43 Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P. and Heinlein, M. 2000a. Function of microtubules in intercellular transport of plant virus RNA. Nat. Cell Biol. 2:826-832.   DOI
44 Beauchemin, C. and Laliberte, J. F. 2007. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J. Virol. 81:10905-10913.   DOI
45 Beffa, R. S., Hofer, R. M., Thomas, M. and Meins, F., Jr. 1996. Decreased susceptibility to viral disease of [beta]-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001-1011.
46 Blackman, L. M., Harper, J. D. and Overall, R. L. 1999. Localization of a centrin-like protein to higher plant plasmodesmata. Eur. J. Cell Biol. 78:297-304.   DOI
47 Lukashina, E., Badun, G., Fedorova, N., Ksenofontov, A., Nemykh, M., Serebryakova, M., Mukhamedzhanova, A., Karpova, O., Rodionova, N., Baratova, L. and Dobrov, E. 2009. Tritium planigraphy study of structural alterations in the coat protein of Potato virus X induced by binding of its triple gene block 1 protein to virions. FEBS J. 276:7006-7015.   DOI
48 Blackman, L. M. and Overall, R. L. 1998. Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J. 14:733-741.   DOI
49 Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C. and Minibayeva, F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53:1367-1376.
50 Bombarely, A., Rosli, H. G., Vrebalov, J., Moffett, P., Mueller, L. A. and Martin, G. B. 2012. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant-Microbe Interact. 25:1523-1530.   DOI
51 Boyko, V., Ferralli, J. and Heinlein, M. 2000b. Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J. 22:315-325.   DOI
52 Boyko, V., Hu, Q., Seemanpillai, M, Ashby, J. and Heinlein, M. 2007. Validation of microtubule-associated Tobacco mosaic virus RNA movement and involvement of microtubulealigned particle trafficking. Plant J. 51:589-603.   DOI
53 Gillespie, T., Boevink, P., Haupt, S., Roberts, A. G., Toth, R., Valentine, T., Chapman, S. and Oparka, K. J. 2002. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207-1222.   DOI
54 Fujiki, M., Kawakami, S., Kim, R. W. and Beachy, R. N. 2006. Domains of Tobacco mosaic virus movement protein essential for its membrane association. J. Gen. Virol. 87:2699-2707.   DOI
55 Genoves, A., Navarro, J. A. and Pallas, V. 2010. The intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol. Plant-Microbe Interact. 23:263-272.   DOI
56 Gergerich, R. C. and Dolja, V. V. 2006. Introduction to plant viruses, the invisible foe. Plant Health Instr. Online publication. doi: 10.1094/PHI-I-2006-0414-01.
57 Mas, P. and Beachy, R. N. 2000. Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc. Natl. Acad. Sci. U. S. A. 97:12345-12349.   DOI
58 Martindale, V. E. and Salisbury, J. L. 1990. Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu. J. Cell Sci. 96:395-402.
59 Martiniere, A., Gargani, D., Uzest, M., Lautredou, N., Blanc, S. and Drucker, M. 2009. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. Plant J. 58:135-146.   DOI
60 Mas, P. and Beachy, R. N. 1999. Replication of Tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J. Cell Biol. 147:945-958.   DOI
61 Maule, A. J. 2008. Plasmodesmata: structure, function and biogenesis. Curr. Opin. Plant Biol. 11:680-686.   DOI
62 McCartney, A. W., Greenwood, J. S., Fabian, M. R., White, K. A. and Mullen, R. T. 2005. Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-toendoplasmic reticulum sorting pathway. Plant Cell 17:3513-3531.   DOI
63 McLean, B. G., Zupan, J. and Zambryski, P. C. 1995. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 7:2101-2114.   DOI
64 Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K. and Opas, M. 1999. Calreticulin: one protein, one gene, many functions. Biochem. J. 344:281-292.   DOI
65 Guenoune-Gelbart, D., Elbaum, M., Sagi, G., Levy, A. and Epel, B. L. 2008. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol. Plant-Microbe Interact. 21:335-345.   DOI
66 Toivola, D. M., Strnad, P., Habtezion, A. and Omary, M. B. 2010. Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20:79-91.   DOI
67 Goodin, M. M., Zaitlin, D., Naidu, R. A. and Lommel, S. A. 2008. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol. Plant-Microbe Interact. 21:1015-1026.   DOI
68 Grangeon, R., Agbeci, M., Chen, J., Grondin, G., Zheng, H. and Laliberte, J. F. 2012a. Impact on the endoplasmic reticulum and Golgi apparatus of Turnip mosaic virus infection. J. Virol. 86:9255-9265.   DOI
69 Grangeon, R., Jiang, J. and Laliberte, J. F. 2012b. Host endomembrane recruitment for plant RNA virus replication. Curr. Opin. Virol. 2:683-690.   DOI
70 Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H. and Laliberte, J. F. 2013. $6K_2$-induced vesicles can move cell to cell during turnip mosaic virus infection. Front. Microbiol. 4:351.
71 Harries, P. A., Palanichelvam, K., Yu, W., Schoelz, J. E. and Nelson, R. S. 2009a. The Cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol. 149:1005-1016.
72 Hagiwara, Y., Komoda, K., Yamanaka, T., Tamai, A., Meshi, T., Funada, R., Tsuchiya, T., Naito, S. and Ishikawa, M. 2003. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J. 22:344-353.   DOI
73 Haikonen, T., Rajamäki, M. L. and Valkonen, J. P. 2013. Interaction of the microtubule-associated host protein HIP2 with viral helper component proteinase is important in infection with Potato virus A. Mol. Plant-Microbe Interact. 26:734-744.   DOI
74 Hanton, S. L., Bortolotti, L. E., Renna, L., Stefano, G. and Brandizzi, F. 2005. Crossing the divide--transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic 6:267-277.   DOI
75 Harries, P. A., Park, J. W., Sasaki, N., Ballard, K. D., Maule, A. J. and Nelson, R. S. 2009b. Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc. Natl. Acad. Sci. U. S. A. 106:17594-17599.   DOI
76 Harries, P. A., Schoelz, J. E. and Nelson, R. S. 2010. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. Mol. Plant-Microbe Interact. 23:1381-1393.   DOI
77 Heinlein, M. 2015. Plant virus replication and movement. Virology 479-480:657-671.   DOI
78 Heinlein, M. and Epel, B. L. 2004. Macromolecular transport and signaling through plasmodesmata. Int. Rev. Cytol. 235:93-164.
79 Heinlein, M., Epel, B. L., Padgett, H. S. and Beachy, R. N. 1995. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983-1985.   DOI
80 Tomenius, K., Clapham, D. and Meshi, T. 1987. Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363-371.   DOI
81 Tsujimoto, Y., Numaga, T., Ohshima, K., Yano, M. A., Ohsawa, R., Gotom, D. B., Naito, S. and Ishikawa, M. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22:335-343.   DOI
82 Ueki, S. and Citovsky, V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycinerich protein. Nat. Cell Biol. 4:478-486.
83 Verchot, J. 2011. Wrapping membranes around plant virus infection. Curr. Opin. Virol. 1:388-395.   DOI
84 Verchot, J. 2014. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Front. Plant Sci. 5:66.
85 Verchot-Lubicz, J. and Goldstein, R. E. 2010. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99-107.   DOI
86 Voigt, C. A. and Somerville, S. C. 2009. Callose in biotic stress (pathogenesis): biology, biochemistry and molecular biology of callose in plant defence: callose deposition and turnover in plant--pathogen interactions. In: Chemistry, biochemistry and biology of (1-3)-beta-glucans and related polysaccharides, eds. by A. Bacic, G. B. Fincher and B. A. Stone, pp. 525-562. Academic Press, London, UK.
87 Voinnet, O., Lederer, C. and Baulcombe, D. C. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157-167.   DOI
88 Kawakami, S., Watanabe, Y. and Beachy, R. N. 2004. Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc. Natl. Acad. Sci. U. S. A. 101:6291-6296.   DOI
89 Karpova, O. V., Zayakina, O. V., Arkhipenko, M. V., Sheval, E. V., Kiselyova, O. I., Poljakov, V. Y., Yaminsky, I. V., Rodionova, N. P. and Atabekov, J. G. 2006. Potato virus X RNAmediated assembly of single-tailed ternary 'coat protein--RNA--movement protein' complexes. J. Gen. Virol. 87:2731-2740.   DOI
90 Kathiria, P., Sidler, C., Golubov, A., Kalischuk, M., Kawchuk, L. M. and Kovalchuk, I. 2010. Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol. 153:1859-1870.   DOI
91 Kiselyova, O. I., Yaminsky, I. V., Karpova, O. V., Rodionova, N. P., Kozlovsky, S. V., Arkhipenko, M. V. and Atabekov, J. G. 2003. AFM study of Potato virus X disassembly induced by movement protein. J. Mol. Biol. 332:321-325.   DOI
92 Kopek, B. G., Perkins, G., Miller, D. J., Ellisman, M. H. and Ahlquist, P. 2007. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol. 5:e220.   DOI
93 Kotlizky, G., Katz, A., van der Laak, J., Boyko, V., Lapidot, M., Beachy, R. N., Heinlein, M. and Epel, B. L. 2001. A dysfunctional movement protein of Tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules. Mol. Plant-Microbe Interact. 14:895-904.   DOI
94 Bucher, G. L., Tarina, C., Heinlein, M., Di Serio, F., Meins, F., Jr. and Iglesias, V. A. 2001. Local expression of enzymatically active class I beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. Plant J. 28:361-369.   DOI
95 Brandner, K., Sambade, A., Boutant, E., Didier, P., Mély, Y., Ritzenthaler, C. and Heinlein, M. 2008. Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. Plant Physiol. 147:611-623.   DOI
96 Brill, L. M., Dechongkit, S., DeLaBarre, B., Stroebel, J., Beachy, R. N. and Yeager, M. 2004. Dimerization of recombinant tobacco mosaic virus movement protein. J. Virol. 78:3372-3377.   DOI
97 Brill, L. M., Nunn, R. S., Kahn, T. W., Yeager, M. and Beachy, R. N. 2000. Recombinant tobacco mosaic virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc. Natl. Acad. Sci. U. S. A. 97:7112-7117.   DOI
98 Carette, J. E., Stuiver, M., Van Lent, J., Wellink, J. and Van Kammen, A. 2000. Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. J. Virol. 74:6556-6563.   DOI
99 Carette, J. E., van Lent, J., MacFarlane, S. A., Wellink, J. and van Kammen, A. 2002. Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J. Virol. 76:6293-6301.   DOI
100 Chen, M. H., Tian, G. W., Gafni, Y. and Citovsky, V. 2005. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol. 138:1866-1876.   DOI
101 Chen, T., Wang, X., von Wangenheim, D., Zheng, M., Samaj, J., Ji, W. and Lin, J. 2012. Probing and tracking organelles in living plant cells. Protoplasma 249 Suppl 2:S157-S167.   DOI
102 Novoa, R. R., Calderita, G., Arranz, R., Fontana, J., Granzow, H. and Risco, C. 2005. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell. 97:147-172.   DOI
103 Kragler, F., Curin, M., Trutnyeva, K., Gansch, A. and Waigmann, E. 2003. MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol. 132:1870-1883.   DOI
104 Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R. S. and Verchot-Lubicz, J. 2003. The Potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312:35-48.   DOI
105 Morita, M. T. and Shimada, T. 2014. The plant endomembrane system--a complex network supporting plant development and physiology. Plant Cell Physiol. 55:667-671.   DOI
106 Netherton, C., Moffat, K., Brooks, E. and Wileman, T. 2007. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv. Virus. Res. 70:101-182.
107 Niehl, A., Pena, E. J., Amari, K. and Heinlein, M. 2013. Microtubules in viral replication and transport. Plant J. 75:290-308.   DOI
108 Oparka, K. J., Roberts, A. G., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K. S., Imlau, A., Kotlizky, G., Sauer, N. and Epel, B. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743-754.   DOI
109 Oparka, K. J., Roberts, A. G., Roberts, I. M., Prior, D. A. M. and Santa Cruz, S. 1996. Viral coat protein is targeted to, but does not gate, plasmodesmata during cell-to-cell movement of Potato virus X. Plant J. 10:805-813.   DOI
110 Heinlein, M., Padgett, H. S., Gens, J. S., Pickard, B. G., Casper, S. J., Epel, B. L. and Beachy, R. N. 1998. Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107-1120.   DOI
111 Hirashima, K. and Watanabe, Y. 2003. RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J. Virol. 77:12357-12362.   DOI
112 Hofmann, C., Niehl, A., Sambade, A., Steinmetz, A. and Heinlein, M. 2009. Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiol. 149:1810-1823.   DOI
113 Howard, A. R., Heppler, M. L., Ju, H. J., Krishnamurthy, K., Payton, M. E. and Verchot-Lubicz, J. 2004. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185-197.   DOI
114 Hull, R. 2009. Comparative plant virology. 2nd ed. Academic Press, Burlington, MA, USA. 376 pp.
115 Hwang, Y. T., McCartney, A. W., Gidda, S. K. and Mullen, R. T. 2008. Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex. BMC Cell Biol. 9:54.   DOI
116 Wan, J., Basu, K., Mui, J., Vali, H., Zheng, H. and Laliberte, J. F. 2015. Ultrastructural characterization of turnip mosaic virusinduced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. J. Virol. 89:12441-12456.   DOI
117 Ostwald, T. J. and MacLennan, D. H. 1974. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249:974-979.
118 Padgett, H. S., Epel, B. L., Kahn, T. W., Heinlein, M., Watanabe, Y. and Beachy, R. N. 1996. Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J. 10:1079-1088.   DOI
119 Waigmann, E., Chen, M. H., Bachmaier, R., Ghoshroy, S. and Citovsky, V. 2000. Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J. 19:4875-4884.   DOI
120 Walsh, D. and Mohr, I. 2011. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9:860-875.   DOI
121 Wang, P. and Hussey, P. J. 2015. Interactions between plant endomembrane systems and the actin cytoskeleton. Front. Plant Sci. 6:422.
122 Wei, T., Huang, T. S., McNeil, J., Laliberte, J. F., Hong, J., Nelson, R. S. and Wang, A. 2010. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J. Virol. 84:799-809.   DOI
123 Wei, T. and Wang, A. 2008. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J. Virol. 82:12252-12264.   DOI
124 White, R. G., Badelt, K., Overall, R. L. and Vesk, M. 1994. Actin associated with plasmodesmata. Protoplasma 180:169-184.   DOI
125 Wolf, S., Deom, C. M., Beachy, R. N. and Lucas, W. J. 1989. Movement protein of Tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377-379.   DOI
126 Angell, S. M., Davies, C. and Baulcombe, D. C. 1996. Cell-tocell movement of Potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216:197-201.   DOI
127 Iglesias, V. A. and Meins, F., Jr. 2000. Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J. 21:157-166.   DOI
128 Imlau, A., Truernit, E. and Sauer, N. 1999. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309-322.   DOI
129 Wolf, S., Deom, C. M., Beachy, R. and Lucas, W. J. 1991. Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3:593-604.   DOI
130 Aaziz, R., Dinant, S. and Epel, B. L. 2001. Plasmodesmata and plant cytoskeleton. Trends Plant Sci. 6:326-330.   DOI
131 Laliberte, J. F. and Zheng, H. 2014. Viral manipulation of plant host membranes. Annu. Rev. Virol. 1:237-259.   DOI
132 Krasavina, M. S., Malyshenko, S. I., Raldugina, G. N., Burmistrova, N. A. and Nosov, A. V. 2002. Can salicylic acid affect the intercellular transport of the tobacco mosaic virus by changing plasmodesmal permeability? Russ. J. Plant Physiol. 49:61-67.   DOI
133 Krishnamurthy, K., Heppler, M., Mitra, R., Blancaflor, E., Payton, M., Nelson, R. S. and Verchot-Lubicz, J. 2003. The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135-151.   DOI
134 Laliberté, J. F. and Sanfaçon, H. 2010. Cellular remodeling during plant virus infection. Annu. Rev. Phytopathol. 48:69-91.   DOI
135 Laporte, C., Vetter, G., Loudes, A. M., Robinson, D. G., Hillmer, S., Stussi-Garaud, C. and Ritzenthaler, C. 2003. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058-2075.   DOI
136 Lee, J. Y., Yoo, B. C., Rojas, M. R., Gomez-Ospina, N., Staehelin, L. A. and Lucas, W. J. 2003. Selective trafficking of noncell-autonomous proteins mediated by NtNCAPP1. Science 299:392-396.   DOI
137 Christensen, N., Tilsner, J., Bell, K., Hammann, P., Parton, R., Lacomme, C. and Oparka, K. 2009. The 5' cap of Tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic 10:536-551.   DOI
138 Ashby, J., Boutant, E., Seemanpillai, M., Groner, A., Sambade, A., Ritzenthaler, C. and Heinlein, M. 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J. Virol. 80:8329-8344.   DOI
139 Cho, S. Y., Cho, W. K., Choi, H. S. and Kim, K. H. 2012. Cisacting element (SL1) of Potato virus X controls viral movement by interacting with the NbMPB2Cb and viral proteins. Virology 427:166-176.   DOI
140 Chrispeels, M. J. 1991. Sorting of proteins in the secretory system. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 42:21-53.   DOI
141 Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. V. and Zambryski, P. 1992. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397-411.   DOI
142 Cotton, S., Grangeon, R., Thivierge, K., Mathieu, I., Ide, C., Wei, T., Wang, A. and Laliberte, J. F. 2009. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J. Virol. 83:10460-10471.   DOI
143 Crawford, K. M. and Zambryski, P. C. 2000. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr. Biol. 10:1032-1040.   DOI
144 Curin, M., Ojangu, E. L., Trutnyeva, K., Ilau, B., Truve, E. and Waigmann, E. 2007. MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of tobacco mosaic virus movement protein in plants. Plant Physiol. 143:801-811.
145 Reichel, C. and Beachy, R. N. 1998. Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 95:11169-11174.   DOI
146 Leshchiner, A. D., Solovyev, A. G., Morozov, S. Y. and Kalinina, N. O. 2006. A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J. Gen. Virol. 87:3087-3095.   DOI
147 Li, W., Zhao, Y., Liu, C., Yao, G., Wu, S., Hou, C., Zhang, M. and Wang, D. 2012. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Rep. 31:905-916.   DOI
148 Liu, C. and Nelson, R. S. 2013. The cell biology of Tobacco mosaic virus replication and movement. Front. Plant Sci. 4:12.
149 Pena, E. J. and Heinlein, M. 2012. RNA transport during TMV cell-to-cell movement. Front. Plant Sci. 3:193.
150 Prod'homme, D., Jakubiec, A., Tournier, V., Drugeon, G. and Jupin, I. 2003. Targeting of the Turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J. Virol. 77:9124-9135.   DOI
151 Ritzenthaler, C., Laporte, C., Gaire, F., Dunoyer, P., Schmitt, C., Duval, S., Piéquet, A., Loudes, A. M., Rohfritsch, O., Stussi-Garaud, C. and Pfeiffer, P. 2002. Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J. Virol. 76:8808-8819.   DOI
152 Robards, A. W. and Lucas, W. J. 1990. Plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:369-419.   DOI
153 Roberts, A. G. and Oparka, K. J. 2003. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 26:103-124.   DOI
154 Ju, H. J., Samuels, T. D., Wang, Y. S., Blancaflor, E., Payton, M., Mitra, R., Krishnamurthy, K., Nelson, R. S. and Verchot-Lubicz, J. 2005. The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol. 138:1877-1895.   DOI
155 de Castro, I. F., Volonte, L. and Risco, C. 2013. Virus factories: biogenesis and structural design. Cell. Microbiol. 15:24-34.   DOI
156 De Storme, N. and Geelen, D. 2014. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front. Plant Sci. 5:138.
157 Ishikawa, M., Naito, S. and Ohno, T. 1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J. Virol. 67:5328-5338.
158 Itaya, A., Liang, G., Woo, Y. M., Nelson, R. S. and Ding, B. 2000. Nonspecific intercellular protein trafficking probed by green fluorescent protein in plants. Protoplasma 213:165-175.   DOI
159 Itaya, A., Woo, Y. M., Masuta, C., Bao, Y., Nelson, R. S. and Ding, B. 1998. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol. 118:373-385.   DOI
160 Kachar, B. 1985. Direct visualization of organelle movement along actin filaments dissociated from characean algae. Science 227:1355-1357.   DOI
161 Sanfacon, H. 2005. Replication of positive-strand RNA viruses in plants: contact points between plant and virus components. Can. J. Bot. 83:1529-1549.   DOI
162 Roberts, I. M., Boevink, P., Roberts, A. G., Sauer, N., Reichel, C. and Oparka, K. J. 2001. Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31-44.   DOI
163 Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V. and Atabekov, J. G. 2003. Linear remodeling of helical virus by movement protein binding. J. Mol. Biol. 333:565-572.   DOI
164 Runions, J., Brach, T., Kuhner, S. and Hawes, C. 2006. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J. Exp. Bot. 57:43-50.   DOI
165 Yang, Y., Ding, B., Baulcombe, D. C. and Verchot, J. 2000. Cell-to-cell movement of the 25K protein of Potato virus X is regulated by three other viral proteins. Mol. Plant-Microbe Interact. 13:599-605.   DOI
166 Wright, K. M., Wood, N. T., Roberts, A. G., Chapman, S., Boevink, P., Mackenzie, K. M. and Oparka, K. J. 2007. Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP. Traffic 8:21-31.   DOI
167 Wu, X., Xu, Z. and Shaw, J. G. 1994. Uncoating of tobacco mosaic virus RNA in protoplasts. Virology 200:256-262.   DOI
168 Yan, F., Lu, Y., Lin, L., Zheng, H. and Chen, J. 2012. The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PLoS One 7:e43242.   DOI
169 Ye, C. M., Chen, S., Payton, M., Dickman, M. B. and Verchot, J. 2013. TGBp3 triggers the unfolded protein response and SKP1-dependent programmed cell death. Mol. Plant Pathol. 14:241-255.   DOI
170 Zambryski, P. and Crawford, K. 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol. 16:393-421.   DOI