• Title/Summary/Keyword: Assembly Simulation

Search Result 590, Processing Time 0.033 seconds

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Springback Minimization using Bottoming in Al Can Deep Drawing Process (알루미늄 캔 딥드로잉에서 Bottoming을 이용한 스프링백 최소화)

  • Park, Sang-Min;Lee, Sa-Rang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.302-307
    • /
    • 2016
  • The technology of multistage deep drawing has been widely applied in the metal forming industry, in order to reduce both the manufacturing cost and time. A battery can used for mobile phone production is a well-known example of multistage deep drawing. It is very difficult to manufacture a battery can, however, because of its large thickness to height aspect ratio. Furthermore, the production of the final parts may result in assembly failure due to springback after multistage deep drawing. In industry, empirical methods such as over bending, corner setting and ironing have been used to reduce springback. In this study, a bottoming approach using the finite element method is proposed as a practical and scientific method of reducing springback. Bottoming induces compression stress in the deformed blank at the final stroke of the punch and, thus, has the effect of reducing springback. Different cases of the bottoming process are studied using the finite element program, DYNAFORM, to determine the optimal die design. The results of the springback simulation after bottoming were found to be in good agreement with the experimental results. In conclusion, the proposed bottoming method is expected to be widely used as a practical method of reducing springback in industry.

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

Line Tracer Modeling for Educational Virtual Experiment (교육용 가상실험 라인 트레이서 모델링)

  • Ki, Jang-Geun;Kwon, Kee-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.109-116
    • /
    • 2021
  • Traditionally, the engineering field has been dominated by face-to-face education focused on experimental practice, but demand for online learning has soared due to the rapid development of IT technology and Internet communication networks and recent changes in the social environment such as COVID-19. In order for efficient online education to be conducted in the engineering field, where the proportion of experimental practice is relatively high compared to other fields, virtual laboratory practice content that can replace actual experimental practice is very necessary. In this study, we developed a line tracer model and a virtual experimental software to simulate it for efficient online learning of microprocessor applications that are essential not only in the electric and electronic field but also in the overall engineering field where IT convergence takes place. In the developed line tracer model, the user can set various hardware parameter values in the desired form and write the software in assembly language or C language to test the operation on the computer. The developed line tracer virtual experimental software has been used in actual classes to verify its operation, and is expected to be an efficient virtual experimental practice tool in online non-face-to-face classes.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes (고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석)

  • Jiwon Jang;Junbom Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells have the advantage of low operating temperatures and fast startup and response characteristics compared to others. Simulation studies are actively researched because their cost and time benefits. In this study, the resistance of water residual in the gas diffusion layer (GDL) of the unit cell was added to the existing equation to compare the actual data with the model data. The experiments were conducted with a 25 cm2 unit cell, and the samples were separated into stopping times of 0, 10, and 60 minutes following primary impedance measurement, activation, and polarization curve data acquisition. This gives 0, 10, and 60 minutes for the residual water in the GDL to evaporate. Without the rest period, the magnitude of the performance improvement was not significantly different at the same potential and flow rate, but the rest period did improve the performance of the membrane electrode assembly when measuring impedance. By changing the magnitude of the resistance reduction to an overvoltage, the voltage difference between the fuel cell model with and without residual water was compared, and the error rate in the high current density region, which is dominated by concentration losses, was reduced.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Development of $^{166}Ho$-Stent for the Treatment of Esophageal Cancer (식도암 치료용 $^{166}Ho$-Stent 개발)

  • Park, Kyung-Bae;Kim, Young-Mi;Kim, Kyung-Hwa;Shin, Byung-Chul;Park, Woong-Woo;Han, Kwang-Hee;Chung, Young-Ju;Choi, Sang-Mu;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • Purpose: Esophageal cancer patients have a difficulty in the intake of meals through the blocked esophageal lumen, which is caused by an ingrowth of cancer cells and largely influences on the prognosis. It is reported that esophageal cancer has a very low survival rate due to the lack of nourishment and immunity as the result of this. In this study a new radioactive stent, which prevents tumor ingrowth and restenosis by additional radiation treatment, has been developed. Materials and Methods: Using ${\ulcorner}HANARO{\lrcorner}$ research reactor, the radioactive stent assembly ($^{166}Ho$-SA) was prepared by covering the metallic stent with a radioactive sleeve by means of a post-irradiation and pre-irradiation methods. Results: Scanning electron microscopy and autoradiography exhibited that the distribution of $^{165/166}Ho\;(NO_3)$ compounds in polyurethane matrix was homogeneous. A geometrical model of the esophagus considering its structural properties, was developed for the computer simulation of energy deposition to the esophageal wall. The dose distributions of $^{166}Ho$-stent were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly on the surface in the form of a cylinder with a diameter of 20 mm and length of 40 mm. As an animal experiment, when radioactive stent developed in this study was inserted into the esophagus of a Mongrel dog, tissue destruction and widening of the esophageal lumen were observed. Conclusion: We have developed a new radioactive stent comprising of a radioactive tubular sleeve covering the metallic stent, which emits homogeneous radiation. If it is inserted into the blocked or narrowed lumen, it can lead to local destruction of the tumor due to irradiation effect with dilatation resulting from self-expansion of the metallic property. Accordingly, it is expected that restenosis esophageal lumen by the continuous ingrowth and infiltration of cancer after insertion of our radioactive stent will be decreased remarkably.

  • PDF

An experimental study of dynamic frictional resistance between orthodontic bracket and arch wire (교정용 브라켓과 강선 사이의 운동마찰저항력에 관한 실험적 연구)

  • Lee, Jae-Hwan;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.467-477
    • /
    • 2001
  • This investigation was designed to determine the effects of wire size, bracket width and the number of bracket on bracket-wire dynamic frictional resistance during simulating arch wire-guided tooth movement in vitro. For simulation of an arch wire-guided tooth movement, we simulated tooth, periodontal ligament and cancellous bone. Maxillary premolar and 1st molar were simulated as real sized resin teeth, the simulated resin teeth which its root was coated by polyether impression material which its elastic modulus is similar to periodontal ligament were embedded in steel housing with inlay wax which its elastic modulus is similar to cancellous bone. Stainless steel wires in four wire size (0.016, 0.018, $0.016\;{\times}\;0.022,\;0.019\;{\times}\;0.025$ inch) were examined with respect to three (stainless steel) bracket widths (2.4, 3.0, 4.3mm) and the number of medium bracket(one, two, three) included in the experimental assembly under dry condition. The wires were ligated into the brackets with elastomeric module. The results were as follows : 1. In all the brackets, frictional resistance increased with increase in wire size. But, statistically similar levels of frictional resistance were observed between 0.018 inch and $0.016\;{\times}\;0.022$ inch wires in narrow bracket and also between 0.016 inch and 0.018 inch wire in wide backet. 2. The frictional forces produced by 0.016 inch wire were statistically similar levels in all the brackets. In 0.018 inch round wire, wide bracket was associated with lower amounts of friction than both narrow and medium brackets. In $0.016\;{\times}\;0.022,\;0.019\;{\times}\;0.025$ inch rectangular wire, wide bracket produced target friction than both narrow and medium brackets. In all the wirer, narrow and medium bracket demonstrated no statistical difference in levels of frictional resistance. 3. Frictional resistance increased with increase In number of medium bracket. 0.016 inch round wire demonstrated the greatest increment in frictional resistance, followed by $0.019\;{\times}\;0.025,\;0.016\;{\times}\;0.022$ inch rectangular wire which were similar level in increment of frictional resistance, 0.018 inch wire demonstrated the least increment. The increments of frictional resistance were not constantly direct proportion to number of bracket.

  • PDF

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.