• 제목/요약/키워드: Asphalt pavement structures

검색결과 34건 처리시간 0.03초

제강슬래그와 폐아스팔트를 활용한 중온 아스팔트 포장의 거동 분석 (Experimental and Numerical Analysis of Warm Mix Asphalt Pavement prepared using Steel Slag and RAP)

  • 이호정;장동복;김현욱;김인태;김기병;이재훈
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.55-65
    • /
    • 2017
  • PURPOSES : This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction. METHODS : For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests. RESULTS : Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior. CONCLUSIONS :Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.

차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축 (Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds)

  • 김수일;서주원;유영규;최준성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

열화상 비파괴 검사법을 이용한 도로포장 결함 검출 (Detecting of the defects of pavement of a road by using infrared thermography)

  • 심준기;김기현
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.69-76
    • /
    • 2015
  • The purpose of this paper is to find an limitation to detect the defect of damaged asphalt pavement structures for infrared thermography. We use heat source of a natural light to detect the defect efficiently. The heat source was applied to the asphalt specimens. Four asphalt specimens were used: one was the asphalt containing depth of 1cm internal timber, two was the asphalt containing depth of 2cm internal void, Three was the asphalt containing depth of 3cm internal timber and four was not the asphalt containing internal timber. It was found that the depth of 3cm internal timber could be detected by this method. In addition, we used the image processing to make the damage zone displayed clear in the image obtained from the thermographic operation.

베이지안 기법을 활용한 공용성 모델개발 연구 (Pavement Performance Model Development Using Bayesian Algorithm)

  • 문성호
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.91-97
    • /
    • 2016
  • PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발 (Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers)

  • 박주원;김형수;김혁중;김성보
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

유한요소기법을 이용한 동공해석과 공용수명 예측기법 연구 (A study on voided-area analysis and remaining life prediction using the finite element method for pavement structures)

  • 이준규;이상염;문성호
    • 한국도로학회논문집
    • /
    • 제18권6호
    • /
    • pp.131-136
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS : The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.

열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화 (Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation)

  • 이관호;김성겸;오승식
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.490-497
    • /
    • 2020
  • 국내 아스팔트 포장 도로는 전체 포장의 약 90%이상을 차지하고 있으며, 건설구조물 중에서는 가장 광범위하게 시공되어지고 있다. 아스팔트 포장의 열전달 특성은 도심지 열섬효과(Heat island effect)에 원인이 되고 있으며, 높은 아스팔트 표면 온도 증가로 인해 파손에 원인이 되고 있다. 이처럼 본 연구에서는 열 변화에 민감한 포장 재료인 아스팔트 혼합물에 태양열 에너지 누적에 따른 열전달 특성 인자를 평가하였다. 평가한 아스팔트 혼합물은 3종류로 밀입도인 WC-2와 배수성 입도인 PA-13, 순환골재를 적용한 WC-2 입도에 대해서 열전달 특성인자(열전도도, 비열용량, 열확산율)와 열에너지 누적에 따른 열전도도변화를 평가하였다. 해당 연구에서 진행한 열누적에 따른 열전도도 실험과 HFM실험 비교 결과, 1.2~2.0배의 차이를 나타냈다. 이는 아스팔트혼합물이 열에너지 누적에 따라 열전도도가 변화한다는 것을 의미한다. 실험결과를 이용하여 아스팔트 혼합물의 표면온도와 입도에 따른 열전도도의 상관관계를 분석하였으며, WC-2 입도의 경우 로그형태의 상관관계를 PA-13의 입도의 경우 선형상관관계를 나타내고 있다. 향후 이러한 열전달 특성 인자는 열에너지에 의한 아스팔트 혼합물의 파손평가 및 모형 개발 연구에 활용 가능한 선행연구가 될 것이라 판단된다.

4.75 mm 공칭 최대 골재 치수 아스팔트 혼합물의 효과적인 포장 시스템 적용을 위한 공용성 특성 평가 연구 (Evaluation of 4.75-mm Nominal Maximum Aggregate Size (NMAS) Mixture Performance Characteristics to Effectively Implement Asphalt Pavement System)

  • 천상현;김국주;박봉석
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.33-41
    • /
    • 2016
  • PURPOSES : This study primarily focused on evaluating the performance characteristics of 4.75-mm nominal maximum aggregate size (NMAS) asphalt mixtures for their more effective implementation to a layered flexible pavement system. METHODS : The full-scale pavements in the FDOT's accelerated pavement testing (APT) program, including 4.75-mm mixtures at the top with different thicknesses and asphalt binder types, were considered for the faster and more realistic evaluation of the rutting performance. The results of superpave indirect tensile (IDT) tests and hot-mix asphalt fracture mechanics (HMA-FM) based model predictions were used for cracking performance assessments. RESULTS : The results indicated that the rutting performance of pavement structures with 4.75-mm mixtures may not be as good as to those with the typical 12.5-mm mixtures, and pavement rutting was primarily confined to the top layer of 4.75-mm mixtures. This was likely due to the relatively higher mixture instability and lower shear resistance compared to 12.5-mm mixtures. The energy ratio (ER) and HMA-FM based model performance prediction results showed a potential benefit of 4.75-mm mixtures in enhanced cracking resistance. CONCLUSIONS : In relation to their implementation, the best use of 4.75-mm mixtures seem to be as a surface course for low-traffic-volume applications. These mixtures can also be properly used as a preservation treatment that does not necessarily last as long as 12.5-mm NMAS structural mixes. It is recommended that adequate thicknesses and binder types be considered for the proper application of a 4.75-mm mixture in asphalt pavements to effectively resist both rutting and cracking.

Electrical signal characteristics of conductive asphalt concrete in the process of fatigue cracking

  • Yang, Qun;Li, Xu;Wang, Ping;Zhang, Hong-Wei
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.469-477
    • /
    • 2014
  • As a kind of intelligent materials, conductive asphalt concrete has a broad application prospect including melting ice and snow on the pavement, closing cracks in asphalt concrete, sensing pavement damage, and so on. Conductive pavement will be suffered from fatigue failure as conventional pavement in the process of service, and this fatigue damage of internal structure can be induced by electrical signal output. The characteristics of electrical signal variation of conductive asphalt concrete in the process of fatigue cracking were researched in this paper. The whole process was clearly divided into three stages according to resistance changes, and the development of fatigue damage wasn't obvious in stage I and stage II, while in stage III, the synchronicity between the resistance and damage began to appear. Thus, fatigue damage variable D and initial damage value $D_0$ represented by the functions of resistance were introduced in stage III. After calculating the initial damage value $D_0$ under different stress levels, it was concluded that the initial damage value $D_0$ had no noticeable change, just ranged between 0.24 and 0.25. This value represented a critical point which could be used to inform the repair time of early fatigue damage in the conductive asphalt pavement.